Response of Maize (Zea mays L.) to Drought under Salinity and Boron Stress in the Atacama Desert

Author:

Riveros-Burgos Camilo1ORCID,Bustos-Peña Richard2,Esteban-Condori Wladimir2,Bastías Elizabeth2

Affiliation:

1. Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile

2. Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Casilla 6-D, Arica 1000000, Chile

Abstract

The Lluta valley in northern Chile is a hyper-arid region with annual precipitation lower than 1.1 mm, and high levels of boron (B) from alluvial deposits are present together with other salts that originated from the Cretaceous. Under these abiotic conditions, the ‘lluteño’ maize (Zea mays L.) is of interest because it has adapted to the Lluta valley with high salinity levels and B excess in the soil and irrigation water. Water and salt stress coincide in heavily irrigated hyper-arid agricultural areas, yet they are usually studied in isolation. We investigated in field conditions the combined effects of drought (22 days with no irrigation) under salinity (ECe: 5.5 mS cm−1; Na+: 17.8 meq L−1) and B (21.1 meq L−1) stress on physiology, growth, yield, and hourly water relations. The results allow to hypothesize that the measurement of the pre-dawn water potential represents the balance between the water potential of the soil and the root. Besides, under drought a significant effect of irrigation and time interaction was observed presenting a high differential between the leaf and stem water potential in both phenological stages. Furthermore, a decrease in net assimilation was observed, and it could be explained in part by non-stomatal factors such as the high radiation and temperature observed at the end of the season. Despite the drought, the cobs did not present a significantly lower quality compared to the cobs of plants without stress.

Funder

MINEDUC, Chile

Universidad de Tarapacá, Chile

Fondo de innovación para la competitividad regional

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3