Effect of Biochar Application on Morpho-Physiological Traits, Yield, and Water Use Efficiency of Tomato Crop under Water Quality and Drought Stress

Author:

Obadi Abdullah1,Alharbi Abdulaziz1,Alomran Abdulrasoul2ORCID,Alghamdi Abdulaziz G.2ORCID,Louki Ibrahim2ORCID,Alkhasha Arafat2ORCID

Affiliation:

1. Plant Production Department, King Saud University, Riyadh 11451, Saudi Arabia

2. Soil Science Department, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Therefore, the experiment was conducted to evaluate the effects of biochar application on the morpho-physiological traits and yield of tomatoes under combined salinity and drought stress in greenhouses. There were 16 treatments consist two water quality fresh and saline (0.9 and 2.3 dS m−1), three deficit irrigation levels (DI) 80, 60, and 40% addition 100% of Evapotranspiration (ETc), and biochar application by rate 5% (BC5%) (w/w) and untreated soil (BC0%). The results indicated that the salinity and water deficit negatively affected morphological, physiological, and yield traits. In contrast, the application of biochar improved all traits. The interaction between biochar and saline water leads to decreased vegetative growth indices, leaf gas exchange, the relative water content of leaves (LRWC), photosynthetic pigments, and yield, especially with the water supply deficit (60 and 40% ETc), where the yield decreased by 42.48% under the highest water deficit at 40% ETc compared to the control. The addition of biochar with freshwater led to a significantly increased vegetative growth, physiological traits, yield, water use efficiency (WUE), and less proline content under all various water treatments compared to untreated soil. In general, biochar combined with DI and freshwater could improve morpho-physiological attributes, sustain the growth of tomato plants, and increase productivity in arid and semi-arid regions.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3