Wild Halophytes: Tools for Understanding Salt Tolerance Mechanisms of Plants and for Adapting Agriculture to Climate Change

Author:

Grigore Marius-NicușorORCID,Vicente OscarORCID

Abstract

Halophytes, wild plants adapted to highly saline natural environments, represent extremely useful—and, at present, underutilised—experimental systems with which to investigate the mechanisms of salt tolerance in plants at the anatomical, physiological, biochemical and molecular levels. They can also provide biotechnological tools for the genetic improvement of salt tolerance in our conventional crops, such as salt tolerance genes or salt-induced promoters. Furthermore, halophytes may constitute the basis of sustainable ‘saline agriculture’ through commercial cultivation after some breeding to improve agronomic traits. All these issues are relevant in the present context of climate emergency, as soil salinity is—together with drought—the most critical environmental factor in reducing crop yield worldwide. In fact, climate change represents the most serious challenge for agricultural production and food security in the near future. Several of the topics mentioned above—mainly referring to basic studies on salt tolerance mechanisms—are addressed in the articles published within this Special Issue.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference32 articles.

1. FAO, IFAD, UNICEF, WEP, and WHO (2018). The State of Food Security and Nutrition in the World 2018. Building Climate Resilience for Food Security and Nutrition, Food and Agriculture Organization (FAO) of the United Nations.

2. Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Lv, Y., and Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8.

3. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., and Möller, V. (2022). Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

4. Plant productivity and environment;Boyer;Science,1982

5. Soil salinity: A threat to global food security;Butcher;Agron. J.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3