Combination of Iron and Zinc Enhanced the Root Cell Division, Mitotic Regularity and Nucleolar Activity of Hexaploid Triticale

Author:

Carvalho Ana12ORCID,Lino Alexandra3ORCID,Alves Carolina3,Lino Catarina3,Vareiro Débora3ORCID,Lucas Diogo3ORCID,Afonso Gabriela3,Costa José3ORCID,Esteves Margarida3,Gaspar Maria3ORCID,Bezerra Mário3ORCID,Mendes Vladimir3,Lima-Brito José12ORCID

Affiliation:

1. Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal

2. Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal

3. University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal

Abstract

Hexaploid triticale results from crosses between durum wheat and rye. Despite its high agronomic potential, triticale is mainly used for livestock feed. Triticale surpasses their parental species in adaptability and tolerance to abiotic and biotic stresses, being able to grow in acidic soils where a high amount of iron (Fe) and zinc (Zn) is typical. On the other hand, high amounts of these essential trace elements can be cytotoxic to bread wheat. The cytotoxicity induced by seed priming with a high concentration of Fe and Zn impaired root cell division and induced nucleolar changes in bread wheat. Such cytogenetic approaches were expedited and successfully determined cytotoxic and suited micronutrient dosages for wheat nutripriming. With this study, we intended to analyse the hexaploid triticale cv ‘Douro’ root mitotic cell cycle and nucleolar activity after seed priming performed with aqueous solutions of iron (Fe) and/or zinc (Zn), containing a concentration that was previously considered cytotoxic, to bread wheat and to infer the higher tolerance of triticale to these treatments. The overall cytogenetic data allowed us to conclude that the Fe + Zn treatment enhanced the root mitotic index (MI), mitosis regularity and nucleolar activity of ‘Douro’ relative to the control and the individual treatments performed with Fe or Zn alone. The Fe + Zn treatment might suit triticale biofortification through seed priming.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3