Population Structure, Genetic Diversity and Candidate Genes for the Adaptation to Environmental Stress in Picea koraiensis

Author:

Wang Ya1,Jiang Zeping2,Qin Aili2,Wang Fude3,Chang Ermei1,Liu Yifu2,Nie Wen2,Tan Cancan2,Yuan Yanchao2,Dong Yao2,Huang Ruizhi2,Jia Zirui1ORCID,Wang Junhui1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

2. Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China

3. Forestry Research Institute in Heilongjiang Province, Harbin 150081, China

Abstract

Picea koraiensis is major silvicultural and timber species in northeast China, and its distribution area is an important transition zone for genus spruce migration. The degree of intraspecific differentiation of P. koraiensis is high, but population structure and differentiation mechanisms are not clear. In this study, 523,761 single nucleotide polymorphisms (SNPs) were identified in 113 individuals from 9 populations of P. koraiensis by genotyping-by-sequencing (GBS). Population genomic analysis showed that P. koraiensis was divided into three geoclimatic regions: Great Khingan Mountains climatic region, Lesser Khingan Mountains climatic region, and Changbai Mountain climatic region. Mengkeshan (MKS) population on the northern edge of the distribution area and Wuyiling (WYL) population located in the mining area are two highly differentiated groups. Selective sweep analysis showed that MKS and WYL populations had 645 and 1126 selected genes, respectively. Genes selected in the MKS population were associated with flowering and photomorphogenesis, cellular response to water deficit, and glycerophospholipid metabolism; genes selected in the WYL population were associated with metal ion transport, biosynthesis of macromolecules, and DNA repair. Climatic factors and heavy metal stress drives divergence in MKS and WYL populations, respectively. Our findings provide insights into adaptive divergence mechanisms in Picea and will contribute to molecular breeding studies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3