Dynamics of Organic Acids during the Droplet-Vitrification Cryopreservation Procedure Can Be a Signature of Oxidative Stress in Pogostemon yatabeanus

Author:

Lee Hyoeun1,Choi Byeongchan2,Oh Songjin2,Park Hana1,Popova Elena3ORCID,Paik Man-Jeong2,Kim Haenghoon1ORCID

Affiliation:

1. Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea

2. College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea

3. K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia

Abstract

Cryopreservation in liquid nitrogen (LN, −196 °C) is a unique option for the long-term conservation of threatened plant species with non-orthodox or limitedly available seeds. In previous studies, a systematic approach was used to develop a droplet-vitrification (DV) cryopreservation protocol for Postemon yatabeanus shoot tips that includes preculture with 10% sucrose, osmoprotection with C4-35%, cryoprotection with A3-80% vitrification solution, and a three-step regrowth starting with the ammonium-free medium. The tricarboxylic acid (TCA) cycle is a crucial component of plant cell metabolism as it is involved in redox state regulation and energy provision. We hypothesized that organic acids (OAs) associated with the TCA and its side reactions indirectly indicate metabolism intensity and oxidative stress development in shoot tips under the cryopreservation procedure. In this study, the contents of 14 OAs were analyzed using gas chromatography–tandem mass spectrometry (GC-MS/MS) in P. yatabeanus shoot tips in a series of treatments including individual steps of the DV procedure, additional stress imposed by non-optimum protocol conditions (no preculture, no osmoprotection, various vitrification solution composition, using vials instead of aluminum foils, etc.) and regrowth on different media with or without ammonium or growth regulators. The possible relation of OA content with the total cryoprotectant (CPA) concentration and shoot tips regeneration percentage was also explored. Regeneration of cryopreserved shoot tips reduced in descending order as follows: standard protocol condition (91%) > non-optimum vitrification solution (ca. 68%) > non-optimum preculture (60–62%) > regrowth medium (40–64%) > no osmoprotection, cryopreservation in vials (28–30%). Five OAs (glycolic, malic, citric, malonic, and lactic) were the most abundant in the fresh (control) shoot tips. The dynamic pattern of OAs during the DV procedure highly correlated (r = 0.951) with the total CPA concentration employed: it gradually increased through the preculture, osmoprotection, and cryoprotection, peaked at cooling/rewarming (6.38-fold above control level), and returned to the fresh control level after 5 days of regrowth (0.89-fold). The contents of four OAs (2-hydroxybutyric, 3-hydroxypropionic, lactic, and glycolic) showed the most significant (10-209-fold) increase at the cooling/rewarming step. Lactic and glycolic acids were the major OAs at cooling/rewarming, accounting for 81% of the total OAs content. The OAs were categorized into three groups based on their dynamics during the cryopreservation protocol, and these groups were differently affected by protocol step modifications. However, there was no straightforward relationship between the dynamics of OAs and shoot tip regeneration. The results suggest that active modulation of OAs metabolism may help shoot tips to cope with osmotic stress and the chemical cytotoxicity\ of CPAs. Further intensive studies are needed to investigate the effect of cryopreservation on cell primarily metabolism and identify oxidative stress-related biomarkers in plant materials.

Funder

Research Promotion Program of Sunchon National University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference52 articles.

1. FAO (2014). Genebank Standards for Plant Genetic Resources for Food and Agriculture, Food and Agricultural Organization. [Rev. ed.]. Available online: http://www.fao.org/documents/card/en/c/7b79ee93-0f3c-5f58-9adc-5d4ef063f9c7.

2. A two-factor hypothesis of freezing injury: Evidence from Chinese hamster tissue culture cells;Mazur;Exp. Cell Res.,1972

3. Vitrification as an approach to cryopreservation;Fahy;Cryobiology,1984

4. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis;Thomson;Human Reprod.,2009

5. Antioxidants and cryopreservation, the new normal?;Reed;Acta Hortic.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3