Biological Nanofertilizers to Enhance Growth Potential of Strawberry Seedlings by Boosting Photosynthetic Pigments, Plant Enzymatic Antioxidants, and Nutritional Status

Author:

El-Bialy Said M.,El-Mahrouk Mohammed E.,Elesawy Taha,Omara Alaa El-DeinORCID,Elbehiry FathyORCID,El-Ramady HassanORCID,Áron BéniORCID,Prokisch József,Brevik Eric C.ORCID,Solberg Svein Ø.ORCID

Abstract

Strawberry production presents special challenges due the plants’ shallow roots. The rooting stage of strawberry is a crucial period in the production of this important crop. Several amendments have been applied to support the growth and production of strawberry, particularly fertilizers, to overcome rooting problems. Therefore, the current investigation was carried out to evaluate the application of biological nanofertilizers in promoting strawberry rooting. The treatments included applying two different nanofertilizers produced biologically, nano-selenium (i.e., 25, 50, 75, and 100 mg L−1) and nano-copper (i.e., 50 and 100 mg L−1), plus a control (untreated seedlings). The rooting of strawberry seedlings was investigated by measuring the vegetative growth parameters (root weight, seedling weight, seedling length, and number of leaves), plant enzymatic antioxidants (catalase, peroxidase, and polyphenol oxidase activity), and chlorophyll content and its fluorescence and by evaluating the nutritional status (content of nutrients in the fruit and their uptake). The results showed that the applied nanofertilizers improved the growth, photosynthetic pigments, antioxidant content, and nutritional status of the seedlings compared to the control. A high significant increase in nutrient contents reached to more than 14-fold, 6-fold, 5-folf, and 4-fold for Cu, Mn, N, and Se contents, respectively, due to the applied nanofertilizers compared with the control. The result was related to the biological roles of both Se and CuO in activating the many plant enzymes. Comparing the Se with the CuO nanofertilizer, Cu had the strongest effect, which was shown in the higher values in all studied properties. This study showed that nanofertilizers are useful to stimulate strawberry seedling growth and most likely would also be beneficial for other horticultural crops. In general, the applied 100 ppm of biological nano-Se or nano-CuO might achieve the best growth of strawberry seedlings under growth conditions in greenhouses compared to the control. Along with the economic dimension, the ecological dimension of biological nanofertilizers still needs more investigation.

Funder

Project “Development of innovative food raw materials based on Maillard reaction by functional transformation of traditional and exotic mushrooms for food and medicinal purposes”

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3