Different Effects of Reactive Species Generated from Chemical Donors on Seed Germination, Growth, and Chemical Contents of Oryza sativa L.

Author:

Chuesaard Thanyarat1ORCID,Peankid Penpilai2,Thaworn Suwannee3,Jaradrattanapaiboon Anuwat4,Veerana Mayura5ORCID,Panngom Kamonporn1ORCID

Affiliation:

1. Basic Science, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand

2. Forest Management Program, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand

3. Agroforestry Program, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand

4. Crop Production Technology Program, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand

5. Department of Applied Radiation and Isotope, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

Abstract

Reactive oxygen and nitrogen species (RONS) play an important role as signaling molecules in redox reactions throughout a plant life cycle. The purpose of this study was to assess how hydrogen peroxide (H2O2), a reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated from sodium nitroprusside (SNP) and sodium nitrite, affects the germination, growth, and chemical contents of two rice cultivars (Pathum Tani and Sanpatong). The results showed that RNS generated from chemical donors and, especially, H2O2, enhanced the germination of the studied rice cultivars. Among the three chemical donors, H2O2 showed the best efficacy of the reactive species for activating early seed germination, followed by sodium nitrite and SNP. The highest percentage of seed germination rose to 99% at 6 h germination time after treatment with 25 mM of H2O2 for 24 h. Moreover, H2O2 produced a significant increase in the α-amylase activity and total soluble proteins. It was observed that a treatment with H2O2 on germinated seeds produced radicles with a dark blue color for longer than treatments with sodium nitrite and SNP. Our findings imply that H2O2 had a critical role in improving the germination and altering the chemical contents of rice seeds.

Funder

Maejo University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3