Affiliation:
1. Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
2. School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China
3. School of Environment Science & Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
4. Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
Abstract
To compare the effects of different remediation tree species on soil bacterial communities and provide a theoretical basis for the selection of ecosystem function promotion strategies after vegetation restoration, the characteristic changes in soil bacterial communities after Pinus tabulaeformis and Populus euramericana reclamation were explored using high-throughput sequencing and molecular ecological network methods. The results showed that: (1) With the increase in reclamation years, the reclaimed soil properties were close to the control group, and the soil properties of Pinus tabulaeformis were closer to the control group than those of P. euramericana. (2) The dominant bacteria under the canopies of P. tabulaeformis and P. euramericana was the same. Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes, Planctomycetes, Bacteroidetes, and Cyanobacteria were the dominant bacteria in the restored soil, accounting for more than 95% of the total abundance. The average values of the Shannon diversity index, Simpson diversity index, Chao 1 richness estimator, and abundance-based coverage estimator of the bacterial community in the P. euramericana reclaimed soil were higher than those in the P. tabulaeformis reclaimed soil. The influence of reclamation years on the bacterial community of samples is greater than that of species types. (3) The results of ecological network construction showed that the total number of nodes, total number of connections, and average connectivity of the soil bacterial network under P. euramericana reclamation were greater than those under P. tabulaeformis reclamation. The bacterial molecular ecological network under P. euramericana was more abundant. (4) Among the dominant bacteria, the relative abundance of Actinobacteria was negatively correlated with soil pH, soil total nitrogen content, and the activities of urease, invertase, and alkaline phosphatase, while the relative abundance of Proteobacteria and Bacteroidetes was positively correlated with these environmental factors. The relationship between the soil bacterial community of P. tabulaeformis and P. euramericana and the environmental factors is not completely the same, and even the interaction between some environmental factors and bacteria is opposite.
Funder
National Social Science Fund
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference38 articles.
1. The 30 years’ land reclamation and ecological restoration in China: Review, rethinking and prospect;Hu;Coal Sci. Technol.,2019
2. Ministry of Natural Resource of the People’s Republic of China (2020, October 22). China Mineral Resources (2020) [EB/OL], Available online: http://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/202010/t20201022_2572964.html.
3. The research of land reclamation in coal mining area: Prospects and progress;Du;J. Chongqing Norm. Univ. (Nat. Sci.),2018
4. Wang, G., Ren, Y., Bai, X., Su, Y., and Han, J. (2022). Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants. Plants, 11.
5. Applying the aboveground-belowground interaction concept in agriculture: Spatio-temporal scales matter;Veen;Front. Ecol. Evol.,2019
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献