QTL Mapping for Wheat Seed Dormancy in a Yangmai16/Zhongmai895 Double Haploid Population

Author:

Guo Gang12ORCID,Xu Shuhao12,Chen Hao12,Hao Yuanfeng3,Mao Hailiang12

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China

2. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

3. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China

Abstract

Pre-harvest sprouting (PHS) of wheat reduces grain yield and quality, and it is strongly affected by seed dormancy. Therefore, identification of quantitative trait loci (QTL) for seed dormancy is essential for PHS resistance breeding. A doubled haploid (DH) population, consisting of 174 lines from the cross between Yangmai16 (YM16) and Zhongmai895 (ZM895) was used to detect QTLs for seed dormancy and grain color. For seed dormancy, a total of seven QTLs were detected on chromosomes 2A, 3A, 3D, 4D, 5B and 5D over four environments, among which Qdor.hzau-3A, Qdor.hzau-3D.1 and Qdor.hzau-3D.2 were stably detected in more than two environments. For grain color, only two QTLs, Qgc.hzau-3A and Qgc.hzau-3D were detected on chromosomes 3A and 3D, which physically overlapped with Qdor.hzau-3A and Qdor.hzau-3D.1, respectively. Qdor.hzau-3D.2 has never been reported elsewhere and is probably a novel locus with allelic effect of seed dormancy contributed by weakly dormant parent ZM895, and a KASP marker was developed and validated in a wheat natural population. This study provides new information on the genetic dissection of seed dormancy, which may aid in further improvement for marker-assisted wheat breeding for PHS resistance.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3