Plant Genotype Shapes the Soil Nematode Community in the Rhizosphere of Tomatoes with Different Resistance to Meloidognye incognita

Author:

Wang Xiangmei1,Wang Chaoyan2,Chen Ru3,Wang Wenxing3,Wang Diandong2,Tian Xueliang3ORCID

Affiliation:

1. College of Biology and Food Engineering, China Three Gorges University, Yichang 443005, China

2. School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408102, China

3. Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453600, China

Abstract

Soil nematodes are considered indicators of soil quality due to their immediate responses to changes in the soil environment and plants. However, little is known about the effects of plant genotypes on the soil nematode community. To elucidate this, high-throughput sequencing and gas chromatography/mass spectrometry analysis was conducted to analyze the soil nematode community and the structure of root exudates in the rhizosphere of tomatoes with different resistance to Meloidognye incognita. The dominant soil nematode group in the soil of resistant tomatoes was Acrobeloides, while the soil nematode group in the rhizosphere of the susceptible and tolerant tomatoes was Meloidognye. Hierarchical clustering analysis and non-metric multidimensional scaling showed that the three soil nematode communities were clustered into three groups according to the resistance level of the tomato cultivars. The soil nematode community of the resistant tomatoes had a higher maturity index and a low plant-parasite index, Wasilewska index and disease index compared to the values of the susceptible and tolerant tomatoes. Redundancy analysis revealed that the disease index and root exudates were strongly related to the soil nematode community of three tomato cultivars. Taken together, the resistance of the tomato cultivars and root exudates jointly shapes the soil nematode community. This study provided a valuable contribution to understanding the mechanism of plant genotypes shaping the soil nematode community.

Funder

Key Science and Technology Project of Henan Province

Key Scientific Research Project of the University in Henan Province

Scientific and Technological Project of Xinxiang

Project of Plant Protection Key Discipline of Henan Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3