Identification of Trehalose-6-Phosphate Synthase (TPS) Genes Associated with Both Source-/Sink-Related Yield Traits and Drought Response in Rapeseed (Brassica napus L.)

Author:

Yang Bo1ORCID,Zhang Liyuan2ORCID,Xiang Sirou1,Chen Huan1,Qu Cunmin12ORCID,Lu Kun12ORCID,Li Jiana1

Affiliation:

1. Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China

2. Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China

Abstract

Trehalose-6-phosphate synthase (TPS) is an important enzyme for the synthesis of Trehalose-6-phosphate (T6P). In addition to being a signaling regulator of carbon allocation that improves crop yields, T6P also plays essential roles in desiccation tolerance. However, comprehensive studies, such as evolutionary analysis, expression analysis, and functional classification of the TPS family in rapeseed (Brassica napus L.) are lacking. Here, we identified 35 BnTPSs, 14 BoTPSs, and 17 BrTPSs in cruciferous plants, which were classified into three subfamilies. Phylogenetic and syntenic analysis of TPS genes in four cruciferous species indicated that only gene elimination occurred during their evolution. Combined phylogenetic, protein property, and expression analysis of the 35 BnTPSs suggested that changes in gene structures might have led to changes in their expression profiles and further functional differentiation during their evolution. In addition, we analyzed one set of transcriptome data from Zhongshuang11 (ZS11) and two sets of data from extreme materials associated with source-/sink-related yield traits and the drought response. The expression levels of four BnTPSs (BnTPS6, BnTPS8, BnTPS9, and BnTPS11) increased sharply after drought stress, and three differentially expressed genes (BnTPS1, BnTPS5, and BnTPS9) exhibited variable expression patterns among source and sink tissues between yield-related materials. Our findings provide a reference for fundamental studies of TPSs in rapeseed and a framework for future functional research of the roles of BnTPSs in both yield and drought resistance.

Funder

Science and Technology Innovation 2030

Chongqing Agricultural and Rural Committee Project

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3