Maize Production under Drought Stress: Nutrient Supply, Yield Prediction

Author:

Széles Adrienn1ORCID,Horváth Éva1ORCID,Simon Károly1,Zagyi Péter1ORCID,Huzsvai László2

Affiliation:

1. Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary

2. Institute of Statistics and Methodology, Faculty of Economics and Business, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary

Abstract

Maize yield forecasting is important for the organisation of harvesting and storage, for the estimation of the commodity base and for the provision of the country’s feed and food demand (export–import). To this end, a field experiment was conducted in dry (2021) and extreme dry (2022) years to track the development of the crop to determine the evolution of the relative chlorophyll content (SPAD) and leaf area index (LAI) for better yield estimation. The obtained results showed that SPAD and LAI decreased significantly under drought stress, and leaf senescence had already started in the early vegetative stage. The amount of top dressing applied at V6 and V12 phenophases did not increase yield due to the low amount of rainfall. The 120 kg N ha−1 base fertiliser proved to be optimal. The suitability of SPAD and LAI for maize yield estimation was modelled by regression analysis. Results showed that the combined SPAD-LAI was suitable for yield prediction, and the correlation was strongest at the VT stage (R2 = 0.762).

Funder

Ministry of Culture and Innovation of Hungary

János Bolyai Research Scholarship of the Hungarian Academy of Sciences

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference107 articles.

1. Global maize production, consumption and trade: Trends and R&D implications;Erenstein;Food Secur.,2022

2. FAO (Food and Agriculture Organization of the United Nation) (2022). The Future of Food and Agriculture—Drivers and Triggers for Transformation, The Future of Food and Agriculture.

3. (2023, January 01). KSH (Hungarian Central Statistical Office). Available online: https://www.ksh.hu/stadat?lang=hu&theme=mez.

4. (2022, April 17). OMSZ (The Hungarian Meteorological Service). Available online: https://www.met.hu/eghajlat/magyarorszag_eghajlata/eghajlati_adatsorok/Debrecen/adatok/napi_adatok/index.php.

5. Kocsis, K., Horváth, G., Keresztesi, Z., and Nemerkényi, Z. (2018). Magyarország Nemzeti Atlasza 2. Kötet, MTA CSFK Földrajztudományi Intézet. Természeti környezet.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3