BIC2, a Cryptochrome Function Inhibitor, Is Involved in the Regulation of ABA Responses in Arabidopsis

Author:

Wang Yating12,Wang Wei1,Jia Qiming2,Tian Hainan2,Wang Xutong1,Li Yingying2,Hussain Saddam2,Hussain Hadia2,Wang Tianya2,Wang Shucai1ORCID

Affiliation:

1. Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China

2. Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China

Abstract

The plant hormone ABA (abscisic acid) is able to regulate plant responses to abiotic stresses via regulating the expression of ABA response genes. BIC1 (Blue-light Inhibitor of Cryptochromes 1) and BIC2 have been identified as the inhibitors of plant cryptochrome functions, and are involved in the regulation of plant development and metabolism in Arabidopsis . In this study, we report the identification of BIC2 as a regulator of ABA responses in Arabidopsis . RT-PCR (Reverse Transcription-Polymerase Chain Reaction) results show that the expression level of BIC1 remained largely unchanged, but that of BIC2 increased significantly in response to ABA treatment. Transfection assays in Arabidopsis protoplasts show that both BIC1 and BIC2 were mainly localized in the nucleus, and were able to activate the expression of the co-transfected reporter gene. Results in seed germination and seedling greening assays show that ABA sensitivity was increased in the transgenic plants overexpressing BIC2, but increased slightly, if any, in the transgenic plants overexpressing BIC1. ABA sensitivity was also increased in the bic2 single mutants in seedling greening assays, but no further increase was observed in the bic1 bic2 double mutants. On the other hand, in root elongation assays, ABA sensitivity was decreased in the transgenic plants overexpressing BIC2, as well as the bic2 single mutants, but no further decrease was observed in the bic1 bic2 double mutants. By using qRT-PCR (quantitative RT-PCR), we further examined how BIC2 may regulate ABA responses in Arabidopsis , and found that inhibition of ABA on the expression of the ABA receptor genes PYL4 (PYR1-Like 4) and PYL5 were decreased, but promotion of ABA on the expression of the protein kinase gene SnRK2.6 (SNF1-Related Protein Kinases 2.6) was enhanced in both the bic1 bic2 double mutants and 35S:BIC2 overexpression transgenic plants. Taken together, our results suggest that BIC2 regulates ABA responses in Arabidopsis possibly by affecting the expression of ABA signaling key regulator genes.

Funder

National Nature Science Foundation of China

Linyi University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3