Selection of High-Yielding and Stable Genotypes of Barley for the Cold Climate in Iran

Author:

Pour-Aboughadareh Alireza1ORCID,Ghazvini Habibollah1ORCID,Jasemi Seyed Shahriyar1,Mohammadi Solaiman2,Razavi Sayed Alireza3,Chaichi Mehrdad4ORCID,Ghasemi Kalkhoran Marefat5,Monirifar Hassan6,Tajali Hamid3,Fathihafshjani Asadollah7,Bocianowski Jan8ORCID

Affiliation:

1. Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31587-77871, Iran

2. Field and Horticultural Crops Research Department, Agricultural and Natural Resources Research and Education Center of West-Azarbayjan Province, Agricultural Research, Education and Extension Organization, Urmia P.O. Box 57169-63963, Iran

3. Field and Horticultural Crops Research Department, Agricultural and Natural Resources Research and Education Center of Khorasan Razavi Province, Agricultural Research, Education and Extension Organization, Mashhad P.O. Box 91769-83641, Iran

4. Field and Horticultural Crops Research Department, Agricultural and Natural Resources Research and Education Center of Hamedan Province, Agricultural Research, Education and Extension Organization, Hamedan P.O. Box 65199-91169, Iran

5. Field and Horticultural Crops Research Department, Agricultural and Natural Resources Research and Education Center of Ardabil (Moghan) Province, Agricultural Research, Education and Extension Organization, Ardabil P.O. Box 56951-57451, Iran

6. Crop and Horticultural Science Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz P.O. Box 51537-15898, Iran

7. Field and Horticultural Crops Research Department, Agricultural and Natural Resources Research and Education Center of Markazi Province, Agricultural Research, Education and Extension Organization, Arak P.O. Box 38135-889, Iran

8. Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland

Abstract

The interaction between genotypes and environments plays an important role in selecting superior genotypes for target locations. The main objectives of the present study were to analyze the effect of the genotype-by-environment interaction (GEI) and identify superior, newly developed, and promising barley genotypes for cold regions in Iran. For these purposes, a set of genotypes obtained from breeding programs for cold climates in Iran, along with two reference genotypes, were investigated at eight research stations (Tabriz, Ardabil, Arak, Miandoab, Mashhad, Jolge Rokh, Karaj, and Hamadan) during two consecutive growing seasons (2019–2020 and 2020–2021). The results of the freezing test (LT50) showed that most of the tested genotypes had significant cold tolerance at the seedling stage. Based on the additive main effect and multiplicative interaction (AMMI) analysis, environment (E) and GEI effects explained 49.44% and 16.55% of the total variation in grain yield, respectively. Using AMMI1 and AMMI2 models, G2 and G20 were found to be superior genotypes in terms of grain yield and stability. Moreover, AMMI-based stability parameters considered the G20 genotype to be the ideal genotype. A two-plot analysis of the genotype-by-environment interaction (GGE) biplot showed that the 16 experimental environments were grouped into 2 mega-environments. Of the test environments, ARK1 and KAJ2 had the highest discriminating power and representativeness ability, and these were identified as ideal environments for testing advanced genotypes for yield and stability performance during early barley breeding practices in cold areas in Iran. In conclusion, both AMMI and GGE biplot models identified several superior genotypes, among which G20, with a high average yield relative to the overall average yield and the lowest IPC1 score, was found to have high yield stability and is recommended for inclusion in breeding programs for cold climates in Iran.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3