Assessing Radish Health during Space Cultivation by Gene Transcription

Author:

Hasenstein Karl H.1ORCID,John Susan P.1,Vandenbrink Joshua P.2

Affiliation:

1. Biology Department, University of Louisiana Lafayette, Lafayette, LA 70504, USA

2. Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA

Abstract

During the Advanced Plant Habitat experiment 2, radish plants were grown in two successive grow-outs on the International Space Station (ISS) for 27 days each. On days 10, 18, and 24, leaf punch (LP) samples were collected and frozen. At harvest, bulb tissue was sampled with oligo-dT functionalized Solid Phase Gene Extraction (SPGE) probes. The space samples were compared with samples from ground controls (GC) grown at the Kennedy Space Center (KSC) under the same conditions as on the ISS, with notably elevated CO2 (about 2500 ppm), and from lab plants grown under atmospheric CO2 but with light and temperature conditions similar to the KSC control. Genes corresponding to peroxidase (RPP), glucosinolate biosynthesis (GIS), protein binding (CBP), myrosinase (RMA), napin (RSN), and ubiquitin (UBQ) were measured by qPCR. LP from day 24 and bulb samples collected at harvest were compared with RNA-seq data from material that was harvested, frozen, and analyzed after return to Earth. The results showed stable transcription in LP samples in GC but decreasing values in ISS samples during both grow-outs, possibly indicative of stress. SPGE results were similar between GC and ISS samples. However, the RNA-seq analyses showed different transcription profiles than SPGE or LP results, possibly related to localized sampling. RNA-seq of leaf samples showed greater variety than LP data, possibly because of different sampling times. RSN and RPP showed the lowest transcription regardless of method. Temporal analyses showed relatively small changes during plant development in space and in ground controls. This is the first study that compares developmental changes in space-grown plants with ground controls based on a comparison between RNA-seq and qPCR analyses.

Funder

NASA

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3