Polianthes tuberosa-Mediated Silver Nanoparticles from Flower Extract and Assessment of Their Antibacterial and Anticancer Potential: An In Vitro Approach

Author:

Alghuthaymi Mousa1,Patil Sunita2,Rajkuberan Chandrasekaran3ORCID,Krishnan Muthukumar4,Krishnan Ushani5,Abd-Elsalam Kamel6ORCID

Affiliation:

1. Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11971, Saudi Arabia

2. Rajiv Memorial Education Society’s College of Pharmacy, Gulbarga 585102, India

3. Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, India

4. Department of Petrochemical Technology, Anna University, Tiruchirappalli 620024, India

5. Karpaga vinayaga College of Engineering, Chengalpattu 603308, India

6. Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt

Abstract

Plant-mediated metallic nanoparticles have beenreported for a diversified range of applications in biological sciences. In the present study, we propose the Polianthes tuberosa flower as a reducing and stabilizing agent for the synthesis of silver nanoparticles (PTAgNPs). The PTAgNPs were exclusively characterized using UV–Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy, zeta potential, and transmission electron microscopy (TEM) studies. In a biological assay, we investigated the antibacterial and anticancer activity of silver nanoparticles in the A431 cell line. The PTAgNPs demonstrated a dose-dependent activity in E. coli and S. aureus, suggesting the bactericidal nature of AgNPs. The PTAgNPs exhibited dose-dependent toxicity in the A431 cell line, with an IC50 of 54.56 µg/mL arresting cell growth at the S phase, as revealed by flow cytometry analysis. The COMET assay revealed 39.9% and 18.15 severities of DNA damage and tail length in the treated cell line, respectively. Fluorescence staining studies indicate that PTAgNPs cause reactive oxygen species (ROS) and trigger apoptosis. This research demonstrates that synthesized silver nanoparticles have a significant effect on inhibiting the growth of melanoma cells and other forms of skin cancer. The results show that these particles can cause apoptosis or cell death in malignant tumor cells. This suggests that they could be used to treat skin cancers without harming normal tissues.

Funder

Scientific Research at Shaqra University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3