Effect of Arbuscular Mycorrhizal Fungi on Nitrogen and Phosphorus Uptake Efficiency and Crop Productivity of Two-Rowed Barley under Different Crop Production Systems

Author:

Beslemes Dimitrios1ORCID,Tigka Evangelia1ORCID,Roussis Ioannis2ORCID,Kakabouki Ioanna2ORCID,Mavroeidis Antonios2,Vlachostergios Dimitrios1ORCID

Affiliation:

1. Institute of Industrial and Forage Crops, Hellenic Agricultural Organization Demeter, 41335 Larissa, Greece

2. Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece

Abstract

Arbuscular Mycorrhizal Fungi (AMF) constitute a ubiquitous group of soil microorganisms, affecting plant and soil microorganism growth. Various crop management practices can have a significant impact on the AM association. This study investigated the AMF inoculation contribution on growth and productivity of two-rowed barley crop by identifying the underlying mechanisms both in conventional and organic cropping systems. A two-year field trial was set up as a split-plot design with 2 main plots [AMF inoculation: with (AMF+) and without (AMF−)] and five sub-plots (fertilization regimes: untreated, 100% recommended dose of fertilizer in organic and inorganic form, and 60% recommended dose of fertilizer in organic and inorganic form) in three replications. According to the results, AMF+ plants presented higher plant height and leaf area index (LAI), resulting in increased biomass and, as a result, higher seed yield. With regard to the quality traits, including the nitrogen and phosphorus uptake and their utilization indices, the AMF inoculated plants showed higher values. Furthermore, the level of fertilization, particularly in an inorganic form, adversely affected AMF root colonization. Consequently, it was concluded that substitution of inorganic inputs by organic, as well as inputs reduction, when combined with AMF inoculation, can produce excellent results, thus making barley crop cultivation sustainable in Mediterranean climates.

Funder

Research & Technology Development Innovation projects

European Social Fund

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3