Important Medicinal and Food Taxa (Orders and Families) in Kenya, Based on Three Quantitative Approaches

Author:

Mutie Fredrick Munyao123ORCID,Mbuni Yuvenalis Morara4,Rono Peninah Cheptoo123ORCID,Mkala Elijah Mbandi123ORCID,Nzei John Mulinge23ORCID,Phumthum Methee5,Hu Guang-Wan23ORCID,Wang Qing-Feng123ORCID

Affiliation:

1. CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China

2. Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. East African Herbarium, Nairobi National Museums, P.O. Box 45166, Nairobi 00100, Kenya

5. Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand

Abstract

Globally, food and medicinal plants have been documented, but their use patterns are poorly understood. Useful plants are non-random subsets of flora, prioritizing certain taxa. This study evaluates orders and families prioritized for medicine and food in Kenya, using three statistical models: Regression, Binomial, and Bayesian approaches. An extensive literature search was conducted to gather information on indigenous flora, medicinal and food plants. Regression residuals, obtained using LlNEST linear regression function, were used to quantify if taxa had unexpectedly high number of useful species relative to the overall proportion in the flora. Bayesian analysis, performed using BETA.INV function, was used to obtain superior and inferior 95% probability credible intervals for the whole flora and for all taxa. To test for the significance of individual taxa departure from the expected number, binomial analysis using BINOMDIST function was performed to obtain p-values for all taxa. The three models identified 14 positive outlier medicinal orders, all with significant values (p < 0.05). Fabales had the highest (66.16) regression residuals, while Sapindales had the highest (1.1605) R-value. Thirty-eight positive outlier medicinal families were identified; 34 were significant outliers (p < 0.05). Rutaceae (1.6808) had the highest R-value, while Fabaceae had the highest regression residuals (63.2). Sixteen positive outlier food orders were recovered; 13 were significant outliers (p < 0.05). Gentianales (45.27) had the highest regression residuals, while Sapindales (2.3654) had the highest R-value. Forty-two positive outlier food families were recovered by the three models; 30 were significant outliers (p < 0.05). Anacardiaceae (5.163) had the highest R-value, while Fabaceae had the highest (28.72) regression residuals. This study presents important medicinal and food taxa in Kenya, and adds useful data for global comparisons.

Funder

National Natural Science Foundation of China

Sino-Africa Joint Research Center

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference169 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3