Diversity Temporal–Spatial Dynamics of Potato Rhizosphere Ciliates and Contribution to Nitrogen- and Carbon-Derived Nutrition in North-East China

Author:

Zheng Weibin12ORCID,Zheng Xiaodan12ORCID,Wu Yuqing12,Lv Shaoyang12,Ge Chang12,Wang Xiang12,Wang Qiuhong3,Cui Jingjing3,Ren Nanqi2,Chen Ying12ORCID

Affiliation:

1. Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China

2. State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

3. Crop Academy, Heilongjiang University, Harbin 150080, China

Abstract

Ciliates are an important component of the rhizosphere microorganism community, but their nutritional contribution to plants has not been fully revealed. In this paper, we investigated the rhizosphere ciliate community of potatoes during six growth stages, illustrated the spatial–temporal dynamics of composition and diversity, and analyzed the correlation between soil physicochemical properties. The contributions of ciliates to the carbon- and nitrogen-derived nutrition of potatoes were calculated. Fifteen species of ciliates were identified, with higher diversity in the top soil, which increased as the potatoes grew, while they were more abundant in the deep soil, and the number decreased as the potatoes grew. The highest number of species of ciliates appeared in July (seedling stage). Among the five core species of ciliates, Colpoda sp. was the dominant species in all six growth stages. Multiple physicochemical properties affected the rhizosphere ciliate community, with ammonium nitrogen (NH4+-N) and the soil water content (SWC) greatly influencing ciliate abundance. The key correlation factors of ciliates diversity were NH4+-N, available phosphorus (AP), and soil organic matter (SOM). The annual average contribution rates of carbon and nitrogen by rhizosphere ciliates to potatoes were 30.57% and 23.31%, respectively, with the highest C/N contribution rates reaching 94.36% and 72.29% in the seedling stage. This study established a method for estimating the contributions of carbon and nitrogen by ciliates to crops and found that ciliates could be potential organic fertilizer organisms. These results might be used to improve water and nitrogen management in potato cultivation and promote ecological agriculture.

Funder

NSFC

Shenzhen Science and Technology Program

Harbin Normal University doctor innovation

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3