Evaluation of Salt Stress-Induced Changes in Polyamine, Amino Acid, and Phytoalexin Profiles in Mature Fruits of Grapevine Cultivars Grown in Tunisian Oases

Author:

Habib Abir123ORCID,Ben Maachia Sihem12ORCID,Namsi Ahmed1,Harbi Ben Slimane Mounira2,Jeandet Philippe4ORCID,Aziz Aziz4ORCID

Affiliation:

1. Horticulture Laboratory, Research Center of Oasis Agriculture (CRRAO), Deguech 2260, Tunisia

2. Horticulture Laboratory, National Agricultural Research Institute of Tunisia, Tunis 2049, Tunisia

3. Institut Supérieur Agronomique de Chott-Mariem, University of Sousse, Sousse 4000, Tunisia

4. RIBP USC INRAE 1488, Faculty of Sciences, University of Reims Champagne Ardenne, 51100 Reims, France

Abstract

Salinity stress has become an increasing threat to viticulture in the Tunisian oasis, and more generally, the characterization of salinity tolerance markers can be of great interest for sustainable grape production. This study investigated some metabolic adaptations in different tissues of the ripe berries of indigenous grapevine cultivars after exposure to salt stress to identify the key traits of salt stress tolerance under oasis conditions. We especially focused on the adaptive responses occurring at the level of amino acids, polyamines, and stilbene phytoalexins in the grape berry skin, pulp, and seeds of six grapevine cultivars differing in phenotypic and ampelographic characteristics. Our data showed that amino acids accumulated strongly in the pulp and skin, while resveratrol, trans-piceid and trans-ε-viniferin, as major phytoalexins, significantly accumulated in the seeds. High salinity was also found to increase both the berry skin and pulp contents of essential amino acids such as threonine, valine, leucine, isoleucine, lysine, methionine, and phenylalanine. The amounts of stilbenes also increased under high salinity in the berry skin of all the studied cultivars. Polyamine homeostasis within the different berry tissues suggested enhanced polyamine biosynthesis rather than polyamine oxidation in response to high salinity. Our principal component analysis revealed a clear discrimination between the cultivars based on their metabolic profiles within the ripe berry tissues under high salinity.

Funder

Tunisian Ministry of National Education and Scientific Research

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3