Diurnal Regulation of Leaf Photosynthesis Is Related to Leaf-Age-Dependent Changes in Assimilate Accumulation in Camellia oleifera

Author:

Zhang Jinshun1ORCID,Zhang Lingyun1ORCID,Wang Qi1,Liu Jiali1,Sun Yongjiang1

Affiliation:

1. Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China

Abstract

In order to clarify the mechanism of diurnal changes in photosynthesis of leaves of different leaf ages in Camellia oleifera, current-year leaves (CLs) and annual leaves (ALs) were used as the test materials to analyze the diurnal changes in photosynthetic parameters, assimilate contents and enzyme activities, as well as structural differences and expression levels of sugar transport regulating genes. The rate of net photosynthesis in CLs and ALs was highest in the morning. During the day, there was a decrease in the CO2 assimilation rate, and this decrease was greater in ALs than in CLs at midday. The maximal efficiency of photosystem II (PSII) photochemistry (Fv/Fm) showed a decreasing trend as the sunlight intensity increased, but no significant difference between CLs and ALs was found. Compared with CLs, ALs showed a greater decrease in the carbon export rate at midday and the levels of sugars and starch increased significantly in ALs, accompanied by higher enzyme activity of sucrose synthetase and ADP-glucose pyrophosphorylase. In addition, compared with CLs, ALs had a larger leaf vein area and higher leaf vein density, as well as higher expression levels of sugar transport regulating genes during the day. It is concluded that the excessive accumulation of assimilate is an important factor contributing to the midday depression of photosynthesis in Camellia oleifera annual leaves on a sunny day. Sugar transporters may play an important regulatory role in excessive accumulation of assimilate in leaves.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3