Type of Anion Largely Determines Salinity Tolerance in Four Rumex Species

Author:

Landorfa-Svalbe Zaiga,Andersone-Ozola Una,Ievinsh GedertsORCID

Abstract

The aim of the present study was to compare the effect of various salts composed of different cations (Na+, K+) and anions (chloride, nitrate, nitrite) on growth, development and ion accumulation in three Rumex species with accessions from sea coast habitats (Rumex hydrolapathum, Rumex longifolius and Rumex maritimus) and Rumex confertus from an inland habitat. Plants were cultivated in soil in an experimental automated greenhouse during the autumn–winter season. Nitrite salts strongly inhibited growth of all Rumex species, but R. maritimus was the least sensitive. Negative effects of chloride salts were rather little-pronounced, but nitrates resulted in significant growth stimulation, plant growth and development. Effects of Na+ and K+ at the morphological level were relatively similar, but treatment with K+ salts resulted in both higher tissue electrolyte levels and proportion of senescent leaves, especially for chloride salts. Increases in tissue water content in leaves were associated with anion type, and were most pronounced in nitrate-treated plants, resulting in dilution of electrolyte concentration. At the morphological level, salinity responses of R. confertus and R. hydrolapathum were similar, but at the developmental and physiological level, R. hydrolapathum and R. maritimus showed more similar salinity effects. In conclusion, the salinity tolerance of all coastal Rumex species was high, but the inland species R. confertus was the least tolerant to salinity. Similarity in effects between Na+ and K+ could be related to the fact that surplus Na+ and K+ has similar fate (including mechanisms of uptake, translocation and compartmentation) in relatively salt-tolerant species. However, differences between various anions are most likely related to differences in physiological functions and metabolic fate of particular ions.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3