Enhancing Maize Productivity and Soil Health under Salt Stress through Physiological Adaptation and Metabolic Regulation Using Indigenous Biostimulants

Author:

Ouhaddou Redouane12ORCID,Meddich Abdelilah12ORCID,Ikan Chayma12ORCID,Lahlali Rachid34ORCID,Ait Barka Essaid5ORCID,Hajirezaei Mohammad-Reza6ORCID,Duponnois Robin7,Baslam Marouane128ORCID

Affiliation:

1. Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-7 CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco

2. Plant Physiology and Biotechnology Team, Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco

3. Department of Plant Protection, Phytopathology Unit, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco

4. Plant Pathology Laboratory, AgroBioSciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco

5. Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100 Reims, France

6. Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Molecular Plant Nutrition, Department of Physiology and Cell Biology, OT Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany

7. Laboratoire des Symbioses Tropicales & Méditerranéennes UMR 113 IRD/CIRAD/INRAe/SupAgro Montpellier/UM Campus International de Baillarguet TA A-82/J, CEDEX 5, 34398 Montpellier, France

8. GrowSmart, Seoul 07516, Republic of Korea

Abstract

Salinity poses a persistent threat to agricultural land, continuously jeopardizing global food security. This study aimed to enhance sweet corn (SC) fitness under varying levels of salinity using indigenous biostimulants (BioS) and to assess their impacts on plant performance and soil quality. The experiment included control (0 mM NaCl), moderate stress (MS; 50 mM NaCl), and severe stress (SS; 100 mM NaCl) conditions. Indigenous biostimulants, including compost (C), Bacillus sp., Bacillus subtilis (R), and a consortium of arbuscular mycorrhizal fungi (A) were applied either individually or in combination. Growth traits, physiological and biochemical parameters in maize plants, and the physico–chemical properties of their associated soils were assessed. SS negatively affected plant growth and soil quality. The RC combination significantly improved plant growth under SS, increasing aerial (238%) and root (220%) dry weights compared to controls. This treatment reduced hydrogen peroxide by 54% and increased peroxidase activity by 46% compared to controls. The indigenous biostimulants, particularly C and R, enhanced soil structure and mineral composition (K and Mg). Soil organic carbon and available phosphorus increased notably in C-treated soils. Furthermore, RC (437%) and CAR (354%) treatments exhibited a significant increase in glomalin content under SS. Indigenous biostimulants offer a promising strategy to mitigate salinity-related threats to agricultural land. They improve plant fitness, fine-tune metabolism, and reduce oxidative stress. In addition, the biostimulants improved the soil structure and mineral composition, highlighting their potential for reconstitution and sustainability in salt-affected areas. This approach holds promise for addressing salinity-related threats to global food security.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3