Alleviation of Adverse Effects of Drought Stress on Growth and Nitrogen Metabolism in Mungbean (Vigna radiata) by Sulphur and Nitric Oxide Involves Up-Regulation of Antioxidant and Osmolyte Metabolism and Gene Expression

Author:

Lian Huida1ORCID,Qin Cheng1,Shen Jie1,Ahanger Mohammad Abass2

Affiliation:

1. Department of Life Sciences, University of Changzhi, Changzhi 046000, China

2. College of Life Science, Northwest A&F University, Yangling 712100, China

Abstract

The influence of drought induced by polyethylene glycol (PEG) and the alleviatory effect of nitric oxide (50 µM) and sulphur (S, 1 mM K2SO4) were studied in Vigna radiata. Drought stress reduced plant height, dry weight, total chlorophylls, carotenoids and the content of nitrogen, phosphorous, potassium and sulphur. The foliar applications of NO and sulphur each individually alleviated the decline, with a greater alleviation observed in seedlings treated with both NO and sulphur. The reduction in intermediates of chlorophyll synthesis pathways and photosynthesis were alleviated by NO and sulphur. Oxidative stress was evident through the increased hydrogen peroxide, superoxide and activity of lipoxygenase and protease which were significantly assuaged by NO, sulphur and NO + sulphur treatments. A reduction in the activity of nitrate reductase, glutamine synthetase and glutamate synthase was mitigated due to the application of NO and the supplementation of sulphur. The endogenous concentration of NO and hydrogen sulphide (HS) was increased due to PEG; however, the PEG-induced increase in NO and HS was lowered due to NO and sulphur. Furthermore, NO and sulphur treatments to PEG-stressed seedlings further enhanced the functioning of the antioxidant system, osmolytes and secondary metabolite accumulation. Activities of γ-glutamyl kinase and phenylalanine ammonia lyase were up-regulated due to NO and S treatments. The treatment of NO and S regulated the expression of the Cu/ZnSOD, POD, CAT, RLP, HSP70 and LEA genes significantly under normal and drought stress. The present study advocates for the beneficial use of NO and sulphur in the mitigation of drought-induced alterations in the metabolism of Vigna radiata.

Funder

Natural Science Foundation for Young Scientists of Shanxi Province

National Food legumes Industry Technology System

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3