Plant Growth and Soil Water Content Changes under Different Inter-Row Soil Management Methods in a Sloping Vineyard

Author:

Horel Ágota12ORCID,Zsigmond Tibor123

Affiliation:

1. Institute for Soil Sciences, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman O. St. 15, 1022 Budapest, Hungary

2. National Laboratory for Water Science and Water Security, Institute for Soil Sciences, Centre for Agricultural Research, Herman O. St. 15, 1022 Budapest, Hungary

3. Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem Square 1-3, 1053 Budapest, Hungary

Abstract

The main objective of this study was to investigate soil–plant–water interactions based on field measurements of plant reflectance and soil water content (SWC) in different inter-row managed sloping vineyards. The following three different soil management applications were studied: tilled (T), cover crops (CC), and permanent grass (NT) inter-rows. We measured SWCs within the row and between rows of vines. Each investigated row utilized 7 to 10 measurement points along the slope. Topsoil SWC and temperature, leaf NDVI and chlorophyll concentrations and leaf area index (LAI) were measured every two weeks over the vegetation period (May to November) using handheld instruments. We found that management method and slope position can significantly affect the soil’s physical and chemical properties, such as clay or soil organic carbon contents. Cover crops in the inter-row significantly reduced average SWC. The in-row average topsoil SWCs and temperatures were lower in all study sites compared to the values measured in between rows. Significantly higher SWCs were observed for the upper points compared to the lower ones for CC and T treatments (58.0 and 60.9%, respectively), while the opposite was noted for NT. Grassed inter-row grapevines had significantly lower leaf chlorophyll content than the other inter-row managed sites (p < 0.001). The highest average leaf chlorophyll contents were observed in the T vineyard (16.89 CCI). Based on slope positions, the most distinguishable difference was observed for the CC: 27.7% higher chlorophyll values were observed at the top of the slope compared to the grapevine leaves at the bottom of the slope (p < 0.01). The leaf NDVI values were not as profoundly influenced by slope position in the vineyard as the chlorophyll values were. For overall LAI values, the T treatment had significantly lower values compared to NT and CC (p < 0.001). Moderate correlations were observed between NDVI and LAI and soil nitrogen and carbon content. In general, we found that both inter-row management and slope position can significantly influence soil parameters and affect plant growth, and consequently can accelerate plant stress under sub-optimal environmental conditions such as prolonged drought.

Funder

Hungarian National Research Fund

Eötvös Loránd Research Network

Széchenyi Plan Plus program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3