Plant and Disease Recognition Based on PMF Pipeline Domain Adaptation Method: Using Bark Images as Meta-Dataset

Author:

Cui Zhelin1ORCID,Li Kanglong1ORCID,Kang Chunyan1,Wu Yi1,Li Tao1ORCID,Li Mingyang1

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Efficient image recognition is important in crop and forest management. However, it faces many challenges, such as the large number of plant species and diseases, the variability of plant appearance, and the scarcity of labeled data for training. To address this issue, we modified a SOTA Cross-Domain Few-shot Learning (CDFSL) method based on prototypical networks and attention mechanisms. We employed attention mechanisms to perform feature extraction and prototype generation by focusing on the most relevant parts of the images, then used prototypical networks to learn the prototype of each category and classify new instances. Finally, we demonstrated the effectiveness of the modified CDFSL method on several plant and disease recognition datasets. The results showed that the modified pipeline was able to recognize several cross-domain datasets using generic representations, and achieved up to 96.95% and 94.07% classification accuracy on datasets with the same and different domains, respectively. In addition, we visualized the experimental results, demonstrating the model’s stable transfer capability between datasets and the model’s high visual correlation with plant and disease biological characteristics. Moreover, by extending the classes of different semantics within the training dataset, our model can be generalized to other domains, which implies broad applicability.

Funder

National Natural Science Foundation

Top-notch Academic Programs Project of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3