Changes in the Physiological and Morphometric Characteristics and Biomass Distribution of Forage Grasses Growing under Conditions of Drought and Silicon Application

Author:

Mastalerczuk GrażynaORCID,Borawska-Jarmułowicz Barbara,Darkalt Ahmad

Abstract

Research on mitigating the effects of water scarcity by applying silicon to perennial grasses is still insufficient. This study was conducted to investigate the effect of spring and summer droughts and silicon applications on gas exchange parameters; the morphometric characteristics of root systems; and the biomass distribution of Festulolium braunii, Festuca arundinacea, and Lolium perenne cultivars. Plants were treated with a drought during the tillering phase once a year (during spring or summer regrowth) for 21 days. Foliar nutrition with silicon was applied twice under the drought conditions. Grasses in a pot experiment were cut three times during vegetation. The plants that were exposed to the drought had lower values of the gas exchange parameters than those that were well watered. The beneficial effect of silicon was related to the reduction of excessive water loss through transpiration during the spring drought. Under the drought and silicon applications, the water use efficiency, root dry mass, and length increased compared to the control. Moreover, silicon increased the proportion of both the finer and thicker roots in F. braunii and L. perenne, while the distribution of the root diameter changed least in the more resistant F. arundinacea. Silicon also reduced the carbon content in the roots and increased root carbon accumulation. Our results indicated that Si may help perennial forage grasses cope better with drought stress. This was due to the allocation of carbon to the roots to develop the fine root network, increasing the length and root biomass and improving the water use efficiency.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference63 articles.

1. Future agroclimatic conditions and implications for European grasslands;Trnka;Biol. Plant,2020

2. Forage grasses under drought stress in conditions of Poland;Staniak;Acta Physiol. Plant,2015

3. Droughts and floods—A threat to agriculture;Mioduszewski;Water in the Agricultural Landscape,2006

4. Key challenges and priorities for modelling European grasslands under climate change;Kipling;Sci. Total Environ.,2016

5. Shanker, A. (2011). Abiotic Stress in Plants—Mechanisms and Adaptations, IntechOpen.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3