Co-Expression of JcNAC1- and JcZFP8-Improved Agronomic Traits of Tobacco and Enhanced Drought Resistance through NbbHLH1 and NbbHLH2

Author:

Niu Xianfei1ORCID,Lai Zhiping1,Wang Linghui2,Ma Rui1,Ren Yingying1,Wang Xueying1,Cheng Cheng1,Wang Ting1,Chen Fang1,Xu Ying1

Affiliation:

1. Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China

2. College of Life Science and Food Engineering, Yibin University, Yibin 644000, China

Abstract

Previous studies have identified numerous transcription factors involved in drought response, each of which play different roles in plants. The objective of the present study was to evaluate the effectiveness of two transcription factors on drought response in Jatropha curcas L., JcNAC1 and JcZFP8. The overexpression of these transcription factors in tobacco (Nicotiana benthamiana L.) improved drought resistance, but JcZFP8 delayed germination and JcNAC1 reduced biomass and yield. By constitutively co-expressing these two genes in tobacco, drought resistance was improved, and the negative effects of each of them were overcome. The transgenic plants with double-gene co-expression showed stronger drought tolerance with 1.76-fold greater accumulation of proline and lower H2O2 and malondialdehyde (MDA) content to 43 and 65% of wildtype (WT) levels, respectively. The expression levels of NbbHLH1 and NbbHLH2 genes upregulated linearly with the increased drought tolerance of double genes co-expression plants. In drought conditions, the leaf water contents of bhlh1, bhlh2, and bhlh1bhlh2 deletion mutants obtained by CRISPR-CAS9 knockout technique were maintained at 99%, 97%, and 97% of WT. The bhlh1bhlh2 was found with lower germination rate but with higher reactive oxygen levels (1.64-fold H2O2 and 1.41-fold MDA levels). Thus, the co-expression of two transcription factors with different functions overcame the adverse traits brought by a single gene and enhanced the shared drought-tolerant traits, which can provide guidance on theory and selection of gene combinations for the application of multi-gene co-expression in agriculture in the future.

Funder

Special Project for New Transgenic Technologies and Methods of Ministry of Agriculture

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3