Tomato and Pepper Leaf Parts Contribute Differently to the Absorption of Foliar-Applied Potassium Dihydrogen Phosphate

Author:

Henningsen Jon Niklas1,Bahamonde Héctor Alejandro2,Mühling Karl Hermann1ORCID,Fernández Victoria3ORCID

Affiliation:

1. Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany

2. Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Diagonal 113 N_ 469, La Plata 1900, Argentina

3. Systems and Natural Resources Department, School of Forest Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

Foliar fertilisation is an application technique that is increasingly being used in agriculture and offers the possibility of providing nutrients directly to the site of highest demand. Especially for phosphorus (P), foliar application is an interesting alternative to soil fertilisation, but foliar uptake mechanisms are poorly understood. To gain a better understanding of the importance of leaf surface features for foliar P uptake, we conducted a study with tomato (Solanum lycopersicum) and pepper (Capsicum annuum) plants, which have different leaf surface traits. For this purpose, drops of 200 mM KH2PO4 without surfactant were applied onto the adaxial or abaxial leaf side or to the leaf veins and the rate of foliar P absorption was evaluated after one day. Additionally, leaf surfaces were characterised in detail by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), estimating also leaf surface wettability and free energy, among other parameters. While the leaves of pepper hardly contained any trichomes, the abaxial side and the leaf veins of tomato leaves were densely covered with trichomes. The cuticle of tomato leaves was thin (approximately 50 nm), while that of pepper was thick (approximately 150–200 nm) and impregnated with lignin. Due to the fact that trichomes were most abundant in the leaf veins of tomato, dry foliar fertiliser drop residues were observed to be anchored there, and the highest P uptake occurred via tomato leaf veins, resulting in 62% increased P concentration. However, in pepper, the highest rate of P absorption was recorded after abaxial-side P treatment (+66% P). Our results provide evidence that different leaf parts contribute unequally to the absorption of foliar-applied agrochemicals, which could potentially be useful for optimising foliar spray treatments in different crops.

Funder

European Union

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3