An Integrated Analysis of microRNAs and the Transcriptome Reveals the Molecular Mechanisms Underlying the Regulation of Leaf Development in Xinyang Maojian Green Tea (Camellia sinensis)

Author:

Wang Xianyou12,Zhou Ruijin12,Zhao Shanshan3,Niu Shengyang3

Affiliation:

1. School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China

2. Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China

3. School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China

Abstract

Xinyang Maojian (XYMJ) tea is one of the world’s most popular green teas; the development of new sprouts directly affects the yield and quality of tea products, especially for XYMJ, which has hairy tips. Here, we used transcriptome and small RNA sequencing to identify mRNAs and miRNAs, respectively, involved in regulating leaf development in different plant tissues (bud, leaf, and stem). We identified a total of 381 conserved miRNAs. Given that no genomic data for XYMJ green tea are available, we compared the sequencing data for XYMJ green tea with genomic data from a closely related species (Tieguanyin) and the Camellia sinensis var. sinensis database; we identified a total of 506 and 485 novel miRNAs, respectively. We also identified 11 sequence-identical novel miRNAs in the tissues of XYMJ tea plants. Correlation analyses revealed 97 miRNA–mRNA pairs involved in leaf growth and development; the csn-miR319-2/csnTCP2 and miR159–csnMYB modules were found to be involved in leaf development in XYMJ green tea. Quantitative real-time PCR was used to validate the expression levels of the miRNAs and mRNAs. The miRNAs and target genes identified in this study might shed new light on the molecular mechanisms underlying the regulation of leaf development in tea plants.

Funder

The National Natural Science Foundation of China

The Science and Technology Program of Henan Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3