Festuca coelestis Increases Drought Tolerance and Nitrogen Use via Nutrient Supply–Demand Relationship on the Qinghai-Tibet Plateau

Author:

Zhao Ningning12,Sun Xingrong23,Hou Shuai23,Ma Sujie23,Chen Guohao4,Chen Zelin4,Wang Xiangtao23,Zhang Zhixin4ORCID

Affiliation:

1. College of Resources and Environment, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China

2. Qiangtang Alpine Grassland Ecosystem Research Station (Jointly Built with Lanzhou University), Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China

3. College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China

4. College of Grassland Agriculture, Northwest A & F University, Yangling 712100, China

Abstract

Drought and nutrient deficiency pose great challenges to the successful establishment of native plants on the Qinghai-Tibet Plateau. The dominant factors and strategies that affect the adaptation of alpine herbs to dry and nutrient-deficient environments remain unclear. Three water gradients were established using two-factor controlled experiments: low water (WL), medium water (WM), and high water (WH). The field water-holding capacities were 35%, 55%, and 75%, respectively. Nitrogen fertilizer (N) was applied at four levels: control (CK), low (FL), medium (FM), and high (FH) at 0, 110, 330, and 540 mg/kg, respectively. The results revealed that N was the main limiting factor, rather than phosphorous (P), in Festuca coelestis under drought stress. Under water shortage conditions, F. coelestis accumulated more proline and non-structural carbohydrates, especially in the aboveground parts of the leaves and stems; however, the root diameter and aboveground nitrogen use efficiency were reduced. Appropriate N addition could mitigate the adverse effects by increasing the release of N, P, and enzyme activity in the bulk soil and rhizosphere to balance their ratio, and was mainly transferred to the aboveground parts, which optimized the supply uptake relationship. The effects of water and fertilizer on the physiological adaptability and nutrient utilization of F. coelestis were verified using structural equation modeling. Based on their different sensitivities to water and nitrogen, the WHFM treatment was more suitable for F. coelestis establishment. Our results demonstrated that the disproportionate nutrient supply ability and preferential supply aboveground compared to below ground were the main factors influencing F. coelestis seedling establishment under drought conditions. This study provides evidence for a better understanding of herbaceous plants living in high mountain regions and offers important information for reducing the risk of ecological restoration failure in similar alpine regions.

Funder

Science and Technology Major Project of Tibetan Autonomous Region of China

National Natural Science Foundation of China

Central and Local Universities

Tibet Agriculture and Animal Husbandry University

Northwest A&F University & Tibet Agricultural and Animal Husbandry University Collaborative Fund

Doctoral Scientific Research Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3