Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine (Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction

Author:

Pathirana Ranjith1ORCID,Carimi Francesco2ORCID

Affiliation:

1. The New Zealand Institute for Plant and Food Research Limited, Batchelar Road, Palmerston North 4472, New Zealand

2. Istituto di Bioscienze e BioRisorse (IBBR), Consiglio Nazionale delle Ricerche, Via Ugo la Malfa, 153, 90146 Palermo, Italy

Abstract

Somatic embryogenesis (SE) has many applications in grapevine biotechnology including micropropagation, eradicating viral infections from infected cultivars, mass production of hypocotyl explants for micrografting, as a continuous source for haploid and doubled haploid plants, and for germplasm conservation. It is so far the only pathway for the genetic modification of grapevines through transformation. The single-cell origin of somatic embryos makes them an ideal explant for mutation breeding as the resulting mutants will be chimera-free. In the present research, two combinations of plant growth regulators and different explants from flower buds at two stages of maturity were tested in regard to the efficiency of callusing and embryo formation from the callus produced in three white grape cultivars. Also, the treatment of somatic embryos with the chemical mutagen ethyl methanesulfonate (EMS) was optimised. Medium 2339 supplemented with β-naphthoxyacetic acid (5 μM) and 6-benzylaminopurine (BAP—9.0 μM) produced significantly more calluses than medium 2337 supplemented with 2,4-dichlorophenoxyacetic acid (4.5 µM) and BAP (8.9 µM) in all explants. The calluses produced on medium 2337 were harder and more granular and produced more SEs. Although the stage of the maturity of floral bud did not have a significant effect on the callusing of the explants, calluses produced from immature floral bud explants in the premeiotic stage produced significantly more SEs than those from more mature floral buds. Overall, immature ovaries and cut floral buds exposing the cut ends of filaments, style, etc., tested for the first time in grapevine SE, produced the highest percentage of embryogenic calluses. It is much more efficient to cut the floral bud and culture than previously reported explants such as anthers, ovaries, stigmas and styles during the short flowering period when the immature flower buds are available. When the somatic embryos of the three cultivars were incubated for one hour with 0.1% EMS, their germination was reduced by 50%; an ideal treatment considered to obtain a high frequency of mutations for screening. Our research findings will facilitate more efficient SE induction in grapevines and inducing mutations for improving individual traits without altering the genetic background of the cultivar.

Funder

New Zealand Ministry for Primary Industries’ Sustainable Farming Fund

New Zealand Royal Society Te Apãrangi

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference78 articles.

1. Transgenic plants of Vitis vinifera cv. Seyval blanc;Bornhoff;Plant Cell Rep.,2005

2. New technologies and strategies for grapevine breeding through genetic transformation;Campos;Front. Plant Sci.,2021

3. Aslam, J., Srivastave, P.S., and Sharma, M.P. (2013). Somatic Embryogenesis and Genetic Transformation in Plants, Narosa Publishing House.

4. Optimizing Agrobacterium-mediated transformation of grapevine;Li;In Vitro Cell. Dev. Biol.-Plant,2006

5. Bajaj, Y.P.S. (2001). Transgenic Crops II, Springer.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3