The Isolate Pseudomonas multiresinivorans QL-9a Quenches the Quorum Sensing Signal and Suppresses Plant Soft Rot Disease

Author:

Liu Siqi12,Zhu Xixian12,Yan Zhenchen12,Liu Hui12,Zhang Lianhui12,Chen Wenjuan12,Chen Shaohua12ORCID

Affiliation:

1. National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China

2. Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China

Abstract

Quorum sensing (QS) is a communication mechanism used among microorganisms that regulate the population density and behavior by sensing the concentration of signaling molecules. Quorum quenching (QQ), a novel, eco-friendly, and efficient method for disease control, interferes with QS by disturbing the production and enzymatic degradation of signaling molecules, blocking communication among microorganisms, and thus has deep potential for use in plant disease control. Pectobacterium carotovorum can cause bacterial soft rot, resulting in yield reduction in a variety of crops worldwide, and can be mediated and regulated by the N-acyl homoserine lactones (AHLs), which are typical signaling molecules. In this study, a novel quenching strain of Pseudomonas multiresinivorans QL-9a was isolated and characterized, and it showed excellent degradation ability against AHLs, degrading 98.20% of N-(-3-oxohexanoyl)-L-homoserine lactone (OHHL) within 48 h. Based on the results of the gas chromatography–mass spectrometer (GC–MS) analysis, a possible pathway was proposed to decompose OHHL into fatty acids and homoserine lactone, in which AHL acylase was involved. Additionally, it has been demonstrated that the QL-9a strain and its crude enzyme are promising biocontrol agents that can considerably reduce the severity of the soft rot disease brought on by P. carotovorum, consequently preventing the maceration of a variety of host plant tissues. All of these results suggest promising applications of the QL-9a strain and its crude enzyme in the control of various plant diseases mediated by AHLs.

Funder

Key Realm R&D Program of Guangdong Province, China

Climbing Project of Guangdong Province, China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3