Heterologous Expression of a Ferritin Homologue Gene PpFer1 from Prunus persica Enhances Plant Tolerance to Iron Toxicity and H2O2 Stress in Arabidopsis thaliana

Author:

Yang Yong12,Zhang Jinjin3,Li Mengyuan2,Ning Youzheng4,Tao Yifei2,Shi Shengpeng45ORCID,Dark Adeeba4,Song Zhizhong24ORCID

Affiliation:

1. Zhenjiang Academy of Agricultural Sciences, Zhenjiang Institute of Agricultural Sciences in Hilly Areas of Jiangsu Province, Zhenjiang 212400, China

2. The Engineering Research Institute of Agriculture and Forestry, Ludong University, No. 186 Hongqizhong Road, Yantai 264025, China

3. Faculty of Modern Agriculture, Linyi Vocational University of Science and Technology, No. 1 Macau Road, Linyi 276000, China

4. Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, UK

5. Wolfson College, University of Cambridge, Cambridge CB3 9BB, UK

Abstract

In plants, ferritin proteins play an important role in iron (Fe) storage which contributes to plant growth and development. However, the biological functions of ferritins in fruit trees are essentially unknown. In this study, three Ferritin genes were isolated from ‘Zhentong No. 3’ peach, which were named PpFer1-PpFer3. The expression levels of these genes were different in distinct tissues/organs. Notably, PpFer1 was the most abundantly expressed Ferritin family gene in all tested tissues of ‘Zhentong No. 3’ peach; its expression levels were significantly enhanced throughout the entire peach seedling under Fe toxicity and H2O2 stress, particularly in the leaves. In addition, over-expression of PpFer1 was effective in rescuing the retarded growth of Arabidopsis fer1-2 knockout mutant, embodied in enhanced fresh weight, primary root length, lateral root numbers, total root length, total leaf chlorophyll, stomatal conductance (Gs), net photosynthetic rate (Pn), transpiration rate, and tissue Fe concentration. This study provides insights into understanding the molecular mechanisms of Fe storage and sequestration in perennial fruit trees.

Funder

Major Project of Science and Technology of Shandong Province

China Agriculture Research System of MOF and MARA

China Scholarship Council Fund

Jiangsu Agriculture Science and Technology Innovation Fund

UKRI BBSRC

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3