Multivariate Interaction Analysis of Zea mays L. Genotypes Growth Productivity in Different Environmental Conditions

Author:

Ljubičić Nataša1ORCID,Popović Vera23ORCID,Kostić Marko4,Pajić Miloš5ORCID,Buđen Maša1,Gligorević Kosta5,Dražić Milan5,Bižić Milica5,Crnojević Vladimir1

Affiliation:

1. BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia

2. Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia

3. Faculty of Agriculture, University of Bijeljina, 76300 Bijeljina, Bosnia and Herzegovina

4. Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia

5. Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000 Belgrade, Serbia

Abstract

Evaluating maize genotypes under different conditions is important for identifying which genotypes combine stability with high yield potential. The aim of this study was to assess stability and the effect of the genotype–environment interaction (GEI) on the grain yield traits of four maize genotypes grown in field trials; one control trial without nitrogen, and three applying different levels of nitrogen (0, 70, 140, and 210 kg ha−1, respectively). Across two growing seasons, both the phenotypic variability and GEI for yield traits over four maize genotypes (P0725, P9889, P9757 and P9074) grown in four different fertilization treatments were studied. The additive main effects and multiplicative interaction (AMMI) models were used to estimate the GEI. The results revealed that genotype and environmental effects, such as the GEI effect, significantly influenced yield, as well as revealing that maize genotypes responded differently to different conditions and fertilization measures. An analysis of the GEI using the IPCA (interaction principal components) analysis method showed the statistical significance of the first source of variation, IPCA1. As the main component, IPCA1 explained 74.6% of GEI variation in maize yield. Genotype G3, with a mean grain yield of 10.6 t ha−1, was found to be the most stable and adaptable to all environments in both seasons, while genotype G1 was found to be unstable, following its specific adaptation to the environments.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3