Performance Analysis of Time Series Deep Learning Models for Climate Prediction in Indoor Hydroponic Greenhouses at Different Time Intervals

Author:

Eraliev Oybek1ORCID,Lee Chul-Hee2ORCID

Affiliation:

1. Department of Future Vehicle Engineering, Inha University, 100 Inharo, Mitchuholgu, Incheon 22212, Republic of Korea

2. Department of Mechanical Engineering, Inha University, 100 Inharo, Mitchuholgu, Incheon 22212, Republic of Korea

Abstract

Indoor hydroponic greenhouses are becoming increasingly popular for sustainable food production. On the other hand, precise control of the climate conditions inside these greenhouses is crucial for the success of the crops. Time series deep learning models are adequate for climate predictions in indoor hydroponic greenhouses, but a comparative analysis of these models at different time intervals is needed. This study evaluated the performance of three commonly used deep learning models for climate prediction in an indoor hydroponic greenhouse: Deep Neural Network, Long–Short Term Memory (LSTM), and 1D Convolutional Neural Network. The performance of these models was compared at four time intervals (1, 5, 10, and 15 min) using a dataset collected over a week at one-minute intervals. The experimental results showed that all three models perform well in predicting the temperature, humidity, and CO2 concentration in a greenhouse. The performance of the models varied at different time intervals, with the LSTM model outperforming the other models at shorter time intervals. Increasing the time interval from 1 to 15 min adversely affected the performance of the models. This study provides insights into the effectiveness of time series deep learning models for climate predictions in indoor hydroponic greenhouses. The results highlight the importance of choosing the appropriate time interval for accurate predictions. These findings can guide the design of intelligent control systems for indoor hydroponic greenhouses and contribute to the advancement of sustainable food production.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3