Effects of Glomalin-Related Soil Protein Driven by Root on Forest Soil Aggregate Stability and Carbon Sequestration during Urbanization in Nanchang, China

Author:

Cai Changyongming12,Huang Fei12,Yang Yaying12,Yu Suqin12,Wang Sujia12,Fan Yulu12,Wang Qiong12,Liu Wei12ORCID

Affiliation:

1. Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China

2. College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China

Abstract

Glomalin-related soil protein (GRSP) is a hydrophobic protein released by arbuscular mycorrhizal fungi. It is an important component of the soil carbon pool, and it improves the soil aggregate structure; however, it remains unclear whether GRSP can enhance soil carbon sequestration and improve soil quality during rapid urbanization. The built-up area in Nanchang, China was the study area, and the proportion of impervious surface area was the parameter of urbanization intensity. A total of 184 plots (400 m2) were set up to collect soil samples (0–20 cm) for analysis. Aggregates of five particle sizes were sieved, and the percentage amounts of soil organic carbon (SOC) and GRSP for them were determined. The results showed that the easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP) contents of the four aggregates of <2 mm were 22–46% higher in low urbanization areas than those in high urbanization areas (p < 0.05), indicating that the higher urbanization intensity was associated with the lower GRSP content of different aggregates. The GRSP was significantly positively correlated with SOC (p < 0.05). Moreover, the contribution of GRSP to the SOC pool in the <0.25 mm aggregate was significantly higher than that in other aggregates. In addition, the EE-GRSP content was significantly positively correlated with mean weight diameter (MWD) and geometric mean diameter (GMD) in the four aggregates of <2 mm, whereas it was negatively correlated with fractal dimension (D) in the >2 mm, 1–2 mm and <0.053 mm aggregates. The T-GRSP content showed significant correlations only with MWD, GMD, and D in the 1–2 mm aggregate. This study revealed that increasing urbanization intensity can significantly reduce the GRSP content of different sized aggregates. Moreover, the GRSP content significantly promoted SOC sequestration, and the EE-GRSP content more significantly promoted soil aggregate stability than that of the T-GRSP. These findings provide new ideas for exploring the improvement of soil quality during the process of urbanization.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions;Schneider;Remote Sens. Environ.,2010

2. Soil carbon pools and fluxes in urban ecosystems;Pouyat;Env. Pollut.,2002

3. An Urbanizing World;Brockerhoff;Popul. Bull.,2000

4. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools;Seto;Proc. Natl. Acad. Sci. USA,2012

5. Global urban land-use trends and climate impacts;Seto;Curr. Opin. Environ. Sustain.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3