Genomic Sequence of Canadian Chenopodium berlandieri: A North American Wild Relative of Quinoa

Author:

Samuels Mark E.123,Lapointe Cassandra12ORCID,Halwas Sara4,Worley Anne C.5

Affiliation:

1. Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada

2. Département de Biochimie, Université de Montréal, Montréal, QC H3T 1C5, Canada

3. Département de Médecine, Université de Montréal, Montréal, QC H3T 1C5, Canada

4. Department of Anthropology, University of Manitoba, Winnipeg, MB R3T 2M8, Canada

5. Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M8, Canada

Abstract

Chenopodium berlandieri (pitseed goosefoot) is a widespread native North American plant, which was cultivated and consumed by indigenous peoples prior to the arrival of European colonists. Chenopodium berlandieri is closely related to, and freely hybridizes with the domesticated South American food crop C. quinoa. As such it is a potential source of wild germplasm for breeding with C. quinoa, for improved quinoa production in North America. The C. berlandieri genome sequence could also be a useful source of information for improving quinoa adaptation. To this end, we first optimized barcode markers in two chloroplast genes, rbcL and matK. Together these markers can distinguish C. berlandieri from the morphologically similar Eurasian invasive C. album (lamb’s quarters). Second, we performed whole genome sequencing and preliminary assembly of a C. berlandieri accession collected in Manitoba, Canada. Our assembly, while fragmented, is consistent with the expected allotetraploid structure containing diploid Chenopodium sub-genomes A and B. The genome of our accession is highly homozygous, with only one variant site per 3–4000 bases in non-repetitive sequences. This is consistent with predominant self-fertilization. As previously reported for the genome of a partly domesticated Mexican accession of C. berlandieri, our genome assembly is similar to that of C. quinoa. Somewhat unexpectedly, the genome of our accession had almost as many variant sites when compared to the Mexican C. berlandieri, as compared to C. quinoa. Despite the overall similarity of our genome sequence to that of C. quinoa, there are differences in genes known to be involved in the domestication or genetics of other food crops. In one example, our genome assembly appears to lack one functional copy of the SOS1 (salt overly sensitive 1) gene. SOS1 is involved in soil salinity tolerance, and by extension may be relevant to the adaptation of C. berlandieri to the wet climate of the Canadian region where it was collected. Our genome assembly will be a useful tool for the improved cultivation of quinoa in North America.

Funder

Centre de Recherche du CHU Ste-Justine

NSERC Discovery

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3