Gibberellic Acid and Silicon Ameliorate NaCl Toxicity in Brassica juncea: Possible Involvement of Antioxidant System and Ascorbate-Glutathione Cycle

Author:

Alam Pravej1ORCID,Balawi Thamer Al1,Qadir Sami Ullah2,Ahmad Parvaiz3ORCID

Affiliation:

1. Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Department of Environmental Sciences Government, College for Women, Udhampur 182101, India

3. Department of Botany, Government Degree College, Jammu and Kashmir, Pulwama 192301, India

Abstract

This work was carried out to observe the combined impact of exogenous applications of Gibberellic acid (GA3) and Silicon (Si) on Brassica juncea under salt (NaCl) stress. Application of GA3 and Si enhanced the antioxidant enzyme activities of (APX, CAT, GR, SOD) in B. juncea seedlings under NaCl toxicity. The exogenous Si application decreased Na+ uptake and enhanced the K+ and Ca2+ in salt stressed B. juncea. Moreover, chlorophyll-a (Chl-a), Chlorophyll-b (Chl-b), total chlorophyll (T-Chl), carotenoids and relative water content (RWC) in the leaves declined under salt stress, which were ameorialated after GA3 and Si supplementation individually and in combination. Further, the introduction of Si to NaCl treated B. juncea help in alleviating the negative effects of NaCl toxicity on biomass and biochemical activities. The levels of hydrogen peroxide (H2O2) increase significantly with NaCl treatments, subsequently resulting in enhanced peroxidation of membrane lipids (MDA) and electrolyte leakage (EL). The reduced levels of H2O2 and enhanced antioxidantactivities in Si and GA3 supplemented plants demonstrated the stress mitigating efficiency. In conclusion, it was observed that Si and GA3 application alleviated NaCl toxicity in B. juncea plants through enhanced production of different osmolytes and an antioxidant defence mechanism.

Funder

Deputyship for Research & Innovation, Ministry of Education

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3