Influence of Nitrogen Application Rate on the Importance of NO3−-N and NH4+-N Transfer via Extramycelia of Arbuscular Mycorrhiza to Tomato with Expression of LeNRT2.3 and LeAMT1.1

Author:

Xie Xiaocan,Huang ZheORCID,Lv Weixing,Zhu Houteng,Hui Guoming,Li Ronghua,Lei Xihong,Li ZhifangORCID

Abstract

Arbuscular mycorrhizal fungi (AMF) form mutualistic symbiotic relationships with many land plants and play a key role in nitrogen (N) acquisition. NO3−-N and NH4+-N are the main sources of soil mineral N, but how extraradical mycelial transfer affects the different N forms and levels available to tomato plants is not clear. In the present study, we set up hyphal compartments (HCs) to study the efficiency of N transfer from the extramycelium to tomato plants treated with different N forms and levels of fertilization. Labeled 15NO3−-N or 15NH4+-N was placed in hyphal compartments under high and low N application levels. 15N accumulation in shoots and the expression of LeNRT2.3, LeAMT1.1, and LeAMT1.2 in the roots of tomato were measured. According to our results, both 15NO3−-N and 15NH4+-N were transported via extraradical mycelia to the shoots of plants. 15N accumulation in shoots was similar, regardless of the N form, while a higher 15N concentration was found in shoots with low N application. Compared with the control, inoculation with AMF significantly increased the expression of LeAMT1.1 under high N and LeNRT2.3 under low N. The expression of LeAMT1.1 under high N was significantly increased when NO3—N was added, while the expression of LeNRT2.3 was significantly increased when NH4+-N was added under low N. Taken together, our results suggest that the N transfer by extraradical mycelia is crucial for the acquisition of both NO3−-N and NH4+-N by the tomato plant; however, partial N accumulation in plant tissue is more important with N deficiency compared with a higher N supply. The expression of N transporters was influenced by both the form and level of N supply.

Funder

Beijing Innovation Consortium of Agriculture Research System

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference46 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3