Enhancing Phosphorus and Nitrogen Uptake in Maize Crops with Food Industry Biosolids and Azotobacter nigricans

Author:

Vera-García Sara-Luz1,Rodríguez-Casasola Felipe-Neri2,Barrera-Cortés Josefina1,Albores-Medina Arnulfo3,Muñoz-Páez Karla M.4ORCID,Cañizares-Villanueva Rosa-Olivia1,Montes-Horcasitas Ma.-Carmen1ORCID

Affiliation:

1. Biotechnology and Bioengineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City, CP 07360, Mexico

2. National School of Biological Sciences, Environmental Systems Engineering, Adolfo López Mateos Professional Unit, Zacatenco, Mexico City, CP 07738, Mexico

3. Toxicology Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City, CP 07360, Mexico

4. CONACYT—Institute of Engineering, Juriquilla Academic Unit, National Autonomous University of Mexico, Queretaro, CP 76230, Mexico

Abstract

The problem of phosphorus and nitrogen deficiency in agricultural soils has been solved by adding chemical fertilizers. However, their excessive use and their accumulation have only contributed to environmental contamination. Given the high content of nutrients in biosolids collected from a food industry waste treatment plant, their use as fertilizers was investigated in Zea mays plants grown in sandy loam soil collected from a semi-desert area. These biosolids contained insoluble phosphorus sources; therefore, given the ability of Azotobacter nigricans to solubilize phosphates, this strain was incorporated into the study. In vitro, the suitable conditions for the growth of Z. mays plants were determined by using biosolids as a fertilizer and A. nigricans as a plant-growth-promoting microorganism; in vitro, the ability of A. nigricans to solubilize phosphates, fix nitrogen, and produce indole acetic acid, a phytohormone that promotes root formation, was also evaluated. At the greenhouse stage, the Z. mays plants fertilized with biosolids at concentrations of 15 and 20% (v/w) and inoculated with A. nigricans favored the development of bending strength plants, which was observed on the increased stem diameter (>13.5% compared with the negative control and >7.4% compared with the positive control), as well as a better absorption of phosphorus and nitrogen, the concentration of which increased up to 62.8% when compared with that in the control treatments. The interactions between plants and A. nigricans were observed via scanning electron microscopy. The application of biosolids and A. nigricans in Z. mays plants grown in greenhouses presented better development than when Z. mays plants were treated with a chemical fertilizer. The enhanced plant growth was attributed to the increase in root surface area.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3