Are Protein Cavities and Pockets Commonly Used by Redox Active Signalling Molecules?

Author:

Hancock John T.1ORCID

Affiliation:

1. School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK

Abstract

It has been well known for a long time that inert gases, such as xenon (Xe), have significant biological effects. As these atoms are extremely unlikely to partake in direct chemical reactions with biomolecules such as proteins, lipids, and nucleic acids, there must be some other mode of action to account for the effects reported. It has been shown that the topology of proteins allows for cavities and hydrophobic pockets, and it is via an interaction with such protein structures that inert gases are thought to have their action. Recently, it has been mooted that the relatively inert gas molecular hydrogen (H2) may also have its effects via such a mechanism, influencing protein structures and actions. H2 is thought to also act via interaction with redox active compounds, particularly the hydroxyl radical (·OH) and peroxynitrite (ONOO−), but not nitric oxide (NO·), superoxide anions (O2·−) or hydrogen peroxide (H2O2). However, instead of having a direct interaction with H2, is there any evidence that these redox compounds can also interact with Xe pockets and cavities in proteins, either having an independent effect on proteins or interfering with the action of inert gases? This suggestion will be explored here.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference95 articles.

1. Mechanisms of ROS regulation of plant development and stress responses;Huang;Front. Plant Sci.,2019

2. Nitric oxide buffering and conditional nitric oxide release in stress response;Chaki;J. Exp. Bot.,2018

3. Reactive oxygen species;Bayr;Crit. Care Med.,2005

4. The basics about nitric oxide;Bruckdorfer;Mol. Asp. Med.,2005

5. The NADPH oxidase family and its inhibitors;Kleniewska;Arch. Immunol. Ther. Exp.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3