Optimizing Nitrogen Fertilization to Enhance Productivity and Profitability of Upland Rice Using CSM–CERES–Rice

Author:

Hussain Tajamul12,Mulla David J.3ORCID,Hussain Nurda1,Qin Ruijun2ORCID,Tahir Muhammad3ORCID,Liu Ke4ORCID,Harrison Matthew T.4ORCID,Sinutok Sutinee56ORCID,Duangpan Saowapa1

Affiliation:

1. Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand

2. Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, USA

3. Department of Soil, Water, and Climate, University of Minnesota, 506 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, USA

4. Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia

5. Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand

6. Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand

Abstract

Nitrogen (N) deficiency can limit rice productivity, whereas the over- and underapplication of N results in agronomic and economic losses. Process-based crop models are useful tools and could assist in optimizing N management, enhancing the production efficiency and profitability of upland rice production systems. The study evaluated the ability of CSM–CERES–Rice to determine optimal N fertilization rate for different sowing dates of upland rice. Field experimental data from two growing seasons (2018–2019 and 2019–2020) were used to simulate rice responses to four N fertilization rates (N30, N60, N90 and a control–N0) applied under three different sowing windows (SD1, SD2 and SD3). Cultivar coefficients were calibrated with data from N90 under all sowing windows in both seasons and the remaining treatments were used for model validation. Following model validation, simulations were extended up to N240 to identify the sowing date’s specific economic optimum N fertilization rate (EONFR). Results indicated that CSM–CERES–Rice performed well both in calibration and validation, in simulating rice performance under different N fertilization rates. The d-index and nRMSE values for grain yield (0.90 and 16%), aboveground dry matter (0.93 and 13%), harvest index (0.86 and 7%), grain N contents (0.95 and 18%), total crop N uptake (0.97 and 15%) and N use efficiencies (0.94–0.97 and 11–15%) during model validation indicated good agreement between simulated and observed data. Extended simulations indicated that upland rice yield was responsive to N fertilization up to 180 kg N ha−1 (N180), where the yield plateau was observed. Fertilization rates of 140, 170 and 130 kg N ha−1 were identified as the EONFR for SD1, SD2 and SD3, respectively, based on the computed profitability, marginal net returns and N utilization. The model results suggested that N fertilization rate should be adjusted for different sowing windows rather than recommending a uniform N rate across sowing windows. In summary, CSM–CERES–Rice can be used as a decision support tool for determining EONFR for seasonal sowing windows to maximize the productivity and profitability of upland rice production.

Funder

National Science, Research and Innovation Fund

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3