Photosynthesis, Water Status and K+/Na+ Homeostasis of Buchoe dactyloides Responding to Salinity

Author:

Guo Huan1,Cui Yannong1,Li Zhen1,Nie Chunya1,Xu Yuefei1ORCID,Hu Tianming1

Affiliation:

1. College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China

Abstract

Soil salinization is one of the most serious abiotic stresses restricting plant growth. Buffalograss is a C4 perennial turfgrass and forage with an excellent resistance to harsh environments. To clarify the adaptative mechanisms of buffalograss in response to salinity, we investigated the effects of NaCl treatments on photosynthesis, water status and K+/Na+ homeostasis of this species, then analyzed the expression of key genes involved in these processes using the qRT-PCR method. The results showed that NaCl treatments up to 200 mM had no obvious effects on plant growth, photosynthesis and leaf hydrate status, and even substantially stimulated root activity. Furthermore, buffalograss could retain a large amount of Na+ in roots to restrict Na+ overaccumulation in shoots, and increase leaf K+ concentration to maintain a high K+/Na+ ratio under NaCl stresses. After 50 and 200 mM NaCl treatments, the expressions of several genes related to chlorophyll synthesis, photosynthetic electron transport and CO2 assimilation, as well as aquaporin genes (BdPIPs and BdTIPs) were upregulated. Notably, under NaCl treatments, the increased expression of BdSOS1, BdHKT1 and BdNHX1 in roots might have helped Na+ exclusion by root tips, retrieval from xylem sap and accumulation in root cells, respectively; the upregulation of BdHAK5 and BdSKOR in roots likely enhanced K+ uptake and long-distance transport from roots to shoots, respectively. This work finds that buffalograss possesses a strong ability to sustain high photosynthetic capacity, water balance and leaf K+/Na+ homeostasis under salt stress, and lays a foundation for elucidating the molecular mechanism underlying the salt tolerance of buffalograss.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Shaanxi Province Key Research and Development Program General Project

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3