Affecting Factors of Plant Phyllosphere Microbial Community and Their Responses to Climatic Warming—A Review

Author:

Huang Shaolin1,Zha Xinjie2,Fu Gang1ORCID

Affiliation:

1. Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. Xi’an University of Finance and Economics, Xi’an 710100, China

Abstract

Phyllosphere microorganisms are not only an important part of plants, but also an important part of microorganisms. In this review, the function of phyllosphere microorganisms, the assembly mechanism of phyllosphere microorganisms, the driving factors of phyllosphere microbial community structure, and the effects of climate warming on phyllosphere microbial community structure were reviewed. Generally, phyllosphere microorganisms have a variety of functions (e.g., fixing nitrogen, promoting plant growth). Although selection and dispersal processes together regulate the assembly of phyllospheric microbial communities, which one of the ecological processes is dominant and how external disturbances alter the relative contributions of each ecological process remains controversial. Abiotic factors (e.g., climatic conditions, geographical location and physical and chemical properties of soil) and biological factors (e.g., phyllosphere morphological structure, physiological and biochemical characteristics, and plant species and varieties) can affect phyllosphere microbial community structure. However, the predominant factors affecting phyllosphere microbial community structure are controversial. Moreover, how climate warming affects the phyllosphere microbial community structure and its driving mechanism have not been fully resolved, and further relevant studies are needed.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

China National Natural Science Foundation

Pilot Project of Chinese Academy of Sciences

Tibet Autonomous Region Science and Technology Project

Construction of Zhongba County Fixed Observation and Experiment Station of First Support System for Agriculture Green Development

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3