Comprehensive Ecotoxicity Studies on Quaternary Ammonium Salts Synthesized from Vitamin B3 Supported by QSAR Calculations

Author:

Nowacka Aleksandra1,Olejniczak Adriana1ORCID,Stachowiak Witold1ORCID,Niemczak Michał1ORCID

Affiliation:

1. Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland

Abstract

Lately, ionic forms (namely, quaternary ammonium salts, QASs) of nicotinamide, widely known as vitamin B3, are gaining popularity in the sectors developing novel pharmaceuticals and agrochemicals. However, the direct influence of these unique QASs on the development of various terrestrial plants, as well as other organisms, remains unknown. Therefore, three compounds comprising short, medium, and long alkyl chains in N-alkylnicotinamide were selected for phytotoxicity analyses, which were conducted on representative dicotyledonous (white mustard) and monocotyledonous (sorghum) plants. The study allowed the determination of the impact of compounds on the germination capacity as well as on the development of roots and stems of the tested plants. Interestingly, independently of the length of the alkyl chain or plant species, all QASs were established as non-phytotoxic. In addition, QSAR simulations, performed using the EPI Suite™ program pack, allowed the determination of the products’ potential toxicity toward fish, green algae, and daphnids along with the susceptibility to biodegradation. The obtained nicotinamide derivative with the shortest chain (butyl) can be considered practically non-toxic according to GHS criteria, whereas salts with medium (decyl) and longest (hexadecyl) substituent were included in the ‘acute II’ toxicity class. These findings were supported by the results of the toxicity tests performed on the model aquatic plant Lemna minor. It should be stressed that all synthesized salts exhibit not only a lack of potential for bioaccumulation but also lower toxicity than their fully synthetic analogs.

Funder

National Science Centre in Poland

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3