Composted Bagasse and/or Cyanobacteria-Based Bio-Stimulants Maintain Barley Growth and Productivity under Salinity Stress

Author:

Alharbi Khadiga1ORCID,Hafez Emad M.2,Omara Alaa El-Dein3ORCID,Nehela Yasser4ORCID

Affiliation:

1. Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

3. Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt

4. Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt

Abstract

Soil and water salinity are among the most fatal environmental challenges that threaten agricultural production worldwide. This study investigated the potential impact(s) of soil amendment using composted bagasse and/or foliar application of cyanobacteria-based bio-stimulants (Arthrospira platensis, also known as Spirulina platensis) to combat the harmful effect(s) of using saline water to irrigate barley plants grown in salt-affected soils during 2020/2021 and 2021/2022. Briefly, the dual application of composted bagasse and cyanobacteria-based bio-stimulants significantly improved the soil properties, buffered the exchangeable sodium percentage (ESP), and enhanced the activity of soil enzymes (urease and dehydrogenase). Moreover, both treatments and their combination notably augmented the water relations of barley plants under salinity stress. All treatments significantly decreased stomatal conductance (gs) and relative water content (RWC) but increased the electrolyte leakage (EL) and balanced the contents of Na+ and K+, and their ratio (K+/Na+) of barley leaves under salinity stress compared with those irrigated with fresh water during the 2020/2021 and 2021/2022 seasons. Additionally, composted bagasse and cyanobacteria-based bio-stimulants diminished the oxidative stress in barley plants under salinity stress by improving the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). Consequently, the combination of composted bagasse and cyanobacteria extract resulted in superior yield-related traits such as spike length, number of grains per spike, 1000-grain weight, grain yield, straw yield, and harvest index. Collectively, our findings suggest that the integrative application of composted bagasse and cyanobacteria is promising as a sustainable environmental strategiy that can be used to improve soil properties, plant growth, and productivity of not only barley plants but also maybe other cereal crops irrigated with saline water in salt-affected soil.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3