The Research Process of PSK Biosynthesis, Signaling Transduction, and Potential Applications in Brassica napus

Author:

Shen Xuwen1,Stührwohldt Nils2ORCID,Lin Chen1

Affiliation:

1. Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China

2. Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany

Abstract

Phytosulfokine (PSK) is a disulfated pentapeptide that acts as a growth regulator to control plant growth and development as well as adaptability to biotic and abiotic stress. In the last three decades, PSK has drawn increasing attention due to its various functions. Preproproteins that have been tyrosine sulfonylated and then cleaved by specific enzymes contribute to mature PSK. To transfer a signal from the apoplast to the inner cells, the PSK peptide must bind to the PSK receptors (PSKR1 and PSKR2) at the cell surface. The precise mechanism of PSK signal transduction is still unknown, given that PSKR combines receptor and kinase activity with a capacity to bind calmodulin (CaM). The binding of PSK and PSKR stimulates an abundance of cGMP downstream from PSKR, further activating a cation-translocating unit composed of cyclic nucleotide-gated channel 17 (CNGC17), H+-ATPases AHA1 and AHA2, and BRI-associated receptor kinase 1 (BAK1). Recently, it has been revealed that posttranslational ubiquitination is closely related to the control of PSK and PSKR binding. To date, the majority of studies related to PSK have used Arabidopsis. Given that rapeseed and Arabidopsis share a close genetic relationship, the relevant knowledge obtained from Arabidopsis can be further applied to rapeseed.

Funder

Development of Jiangsu Higher Education Institutions to CL, by Outstanding Ph.D. program in Yangzhou

General Project of Basic Scientific Research to colleges and universities in Jiangsu Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3