Effects of Cadmium Stress on Carbon Sequestration and Oxygen Release Characteristics in A Landscaping Hyperaccumulator—Lonicera japonica Thunb.

Author:

Liu Zhouli12ORCID,An Jing3,Lu Qingxuan12,Yang Chuanjia4,Mu Yitao5,Wei Jianbing12,Hou Yongxia12,Meng Xiangyu12,Zhao Zhuo12,Lin Maosen6

Affiliation:

1. College of Life Science and Engineering, Shenyang University, Shenyang 110044, China

2. Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China

3. Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

4. Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China

5. College of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China

6. College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China

Abstract

The carbon sequestration and oxygen release of landscape plants are dominant ecological service functions, which can play an important role in reducing greenhouse gases, improving the urban heat island effect and achieving carbon peaking and carbon neutrality. In the present study, we are choosing Lonicera japonica Thunb. as a model plant to show the effects of Cd stress on growth, photosynthesis, carbon sequestration and oxygen release characteristics. Under 5 mg kg−1 of Cd treatment, the dry weight of roots and shoots biomass and the net photosynthetic rate (PN) in L. japonica had a significant increase, and with the increase in Cd treatment concentration, the dry weight of roots and shoots biomass and PN in the plant began to decrease. When the Cd treatment concentration was up to 125 mg kg−1, the dry weight of root and shoots biomass and PN in the plant decreased by 5.29%, 1.94% and 2.06%, and they had no significant decrease compared with the control, indicating that the plant still had a good ability for growth and photoenergy utilization even under high concentrations of Cd stress. The carbon sequestration and oxygen release functions in terms of diurnal assimilation amounts (P), carbon sequestration per unit leaf area (WCO2), oxygen release per unit leaf area (WO2), carbon sequestration per unit land area (PCO2) and oxygen release per unit land area (PO2) in L. japonica had a similar change trend with the photosynthesis responses under different concentrations of Cd treatments, which indicated that L. japonica as a landscaping Cd-hyperaccumulator, has a good ability for carbon sequestration and oxygen release even under high concentrations of Cd stress. The present study will provide a useful guideline for effectively developing the ecological service functions of landscaping hyperaccumulators under urban Cd-contaminated environment.

Funder

Northeast Geological S&T Innovation Center of China Geological Survey

Strategic Priority Research Program of the Chinese Academy of Sciences

Open Project of Key Laboratory of Ecological Effects and Control for Emerging Contaminants (Putian University) Fujian Provincial University

National Natural Science Foundation of China

Young Scientists Fund of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3